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Preface

Nowadays it is hard to find areas of human activity and development that have not
profited from or contributed to remote sensing. Natural, physical and social activities find
in remote sensing a common ground for interaction and development. From the end-user
point of view, Earth science, geography, planning, resource management, public policy
design, environmental studies, and health, are some of the areas whose recent
development has been triggered and motivated by remote sensing. From the
technological point of view, remote sensing would not be possible without the
advancement of basic as well as applied research in areas like physics, space technology,
telecommunications, computer science and engineering. This dual conception of remote
sensing brought us to the idea of preparing two different books. The present one is meant
to display recent advances in remote sensing applications, while the accompanying book
is devoted to new techniques for data processing, sensors and platforms.

Strictly speaking, remote sensing consists of collecting data from an object or
phenomenon without making physical contact. In practice, most of the time we refer to
satellite or aircraft-mounted sensors that use some sort of electromagnetic radiation to
gather geospatial information from land, oceans and atmosphere with increasingly high
spatial, spectral and temporal resolutions. Space agencies in charge of collecting
remotely sensed data have shown a notorious interest in making these data available for
research and social development. The confluence of remote sensing technology with
other sciences has resulted in an exponential growth of knowledge, technology
development and assessment of all kind of physical and natural phenomena, as well as
human activities that share a common ground: geospatial information. However, the
success of remote sensing influencing other areas of knowledge and human activity has
not always been a paved way. The variables of great interest to scientists in different
areas are not readily available from the raw remotely-sensed data. Even when the data
has been processed and converted to physical-related values, or even linked to human
and natural artifacts like crop fields, roads, urban areas, geomorphologic structures,
vegetation indices, etc., the relationship between these and the more abstract variables
that explain them such as human settlement dynamics, geophysical phenomena, climate
change, etc. remain a major field of study and research.

This book intends to show the reader how remote sensing impacts other areas of
science, technology, and human activity, by displaying a selected number of high



Preface

quality contributions dealing with different remote sensing applications. Twenty two
chapters have been carefully collected and distributed in four areas. The first part
deals with land cover applications, and contains applications in vegetation indices,
crop and pest monitoring, rainfall and fire relationship with vegetation, change
detection, soil salinization, modeling water and heat regimes, catastrophe assessment
and lava flow mapping. The second part contains contributions on climate and
atmosphere, including carbon and water dynamics, ocean evaporation, and
atmospheric aerosols and clouds. The third part presents oceans and cryosphere
applications that include aquatic vegetation, oil spill assessment, coral reef habitat
mapping, water source predictability from snow maps, cryosphere study, and
maritime search and rescue. Last but not least, the last part presents contributions
dealing with human activity, including population estimation, archaeology, urban
growth, medicine and healthcare and military applications.

I am indebted to all authors who have contributed to this book. Without their
strongest commitment this book would not have been possible. I am also thankful to
InTech editorial team who has provided the opportunity to publish this book.

Boris Escalante-Ramirez

National Autonomous University of México,
Faculty of Engineering, Mexico City,

Mexico
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Narrowband Vegetation Indices for
Estimating Boreal Forest Leaf Area Index

Ellen Eigemeier, Janne Heiskanen, Miina Rautiainen, Matti Mottus,

Veli-Heikki Vesanto, Titta Majasalmi and Pauline Stenberg
University of Helsinki
Finland

1. Introduction
1.1 Leaf area index

The green photosynthesizing leaf area of a canopy is an important characteristic of the status
of the vegetation in terms of its health and production potential. At stand level, the amount
of leaf area in a canopy is represented by a variable called the leaf area index (LAI), which is
one of the key biophysical parameters in the global monitoring and mapping of vegetation
by satellite remote sensing (Morisette et al., 2006). In this paper we adopt the, by now
widely accepted, definition of LAI as the hemi-surface or half of the total surface area of all
leaves or needles in the vegetation canopy divided by the horizontal ground area below the
canopy. The definition is in line with the original definition of LAI, formulated for flat and
(assumedly) infinitely thin leaves (Watson, 1947), as the one-sided leaf area per unit ground
area. For coniferous canopies, the question arose on how to define the “one-sided” area of
non-flat needles. While projected needle area formerly often has been used erroneously as a
synonym to one-sided flat leaf area, it is now commonly accepted that the hemi-surface
needle area represents the logical counterpart to the one-sided area of flat leaves (e.g. Chen
& Black, 1992; Stenberg, 2006).

LAI controls many biological and physical processes, driving the exchange of matter and
energy flow. Because LAI responds rapidly to different stress factors and changes in climatic
conditions, monitoring of LAI yields a dynamic indicator of forest status and health. The
link between forest productivity and LAI, in turn, lies in that LAI is the main determinant of
the fraction of incoming photosynthetically active radiation absorbed by the canopy
(fAPAR). The absorbed photosynthetically active radiation (APAR) quantifies the energy
available for net primary production (NPP) and is thus a critical variable in NPP and carbon
flux models. NPP is related to APAR by the light-use-efficiency originally introduced by
Monteith (1977) for agricultural crops.

Traditionally, ground-based measurements of LAI have typically involved destructive
sampling and determination of allometric relationships, e.g. between leaf area and the basal
area of stem and/or branches carrying the leaves (the pipe model theory) (Shinozaki et al.,
1964; Waring et al., 1982). However, such “direct methods” are quite laborious and indirect
measurements of LAI using optical instruments are today the preferred choice (Welles &
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Cohen, 1996; Jonckheere et al., 2004). They provide inverse estimates of LAI based on the
fraction of gaps through the canopy in different directions, which can be measured using
devices such as the LAI-2000 Plant Canopy Analyzer (LI-COR, 1992) or hemispherical
photography. A vast body of classical literature exists on the dependency between LAI and
canopy gap fraction underlying these techniques (e.g. Wilson, 1965; Miller, 1967; Nilson,
1971; Lang, 1986). In short, the inversion methods rely upon the assumption that leaves are
randomly distributed in the canopy, in which case Beer’s law can be applied to plant
canopies (Monsi & Saeki, 1953). However, as the organization of leaves (needles) in forest
canopies is typically more aggregated (“clumped”) than predicted by a purely random
distribution, the technique causes underestimation of LAI, especially in coniferous stands
(e.g. Smith et al., 1993; Stenberg et al., 1994). Instead of the true LAI, the inversion of gap
fraction data without correction for clumping yields the quantity commonly referred to as
the “effective leaf area index” (Black et al., 1991).

Monitoring LAI in a spatially continuous mode and on a regular basis is possible only using
remote sensing. Estimation of LAI from optical satellite images is considered feasible
because LAI is closely linked to the spectral reflectance of plant canopies in the shortwave
solar radiation range (Myneni et al., 1997). The physical relationships between canopy
spectral reflectances and LAI form the basis of retrieval algorithms used in current Earth
observation programs (e.g. MODIS, CYCLOPES, GLOBCARBON products) for mapping
LAI at global scales. They produce bi-weekly and monthly vegetation maps that are widely
used by biologists, natural resources managers, and climate modelers, e.g. to track seasonal
fluctuations in vegetation or changes in land use. The arrival of narrowband reflectance data
(also known as hyperspectral or imaging spectroscopy data) opens up new possibilities for
satellite-derived estimation/monitoring of variables connected to the status and structure of
vegetation, including LAIL

1.2 Spectral properties of boreal forests

The boreal forest zone, which spreads through Fennoscandia, Russia, Canada and Alaska, is
the largest unbroken forest zone in the world and accounts for approximately one fourth of
the world’s forests. The boreal zone is a major store of carbon and thus plays an important
role in determining global albedo and climate.

The reflectance spectra of coniferous forests (even if they have the same leaf area) are very
distinct from similar broadleaved forests. The reasons for the special spectral behaviour of
coniferous forests are versatile, yet primarily related to their structural, not optical,
properties. Firstly, a high level of within-shoot scattering of conifers was originally noted
nearly four decades ago (Norman & Jarvis, 1975). More recently, Landsat ETM+ data and a
forest reflectance model were used to show that the low near infrared (NIR) reflectances
observed in coniferous areas can largely be explained simply by within-shoot scattering
(Rautiainen & Stenberg, 2005). Secondly, absorption by coniferous needles is higher than
that by broadleaved species (Roberts et al., 2004; Williams, 1991), a phenomenon which can
partly contribute to the lower reflectances of conifer-dominated areas. Other explanations
include, for example, that the tree crown surface of coniferous stands is more heterogeneous
than in broadleaved stands (Hdme, 1991; Schull et al., 2011). In other words, when surface
roughness (i.e. crown-level clumping) increases, the shaded area within the canopy
increases, thus leading to lower reflectances. Overall, these results highlight the importance
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of various geometric properties as the main reason for the reflectance differences between
broadleaved and coniferous stands.

Remote sensing of the biophysical properties, such as LAI, of a boreal coniferous forest
canopy layer is further complicated by the often dominating role of the understory in the
spectral signal (Rautiainen et al., 2011; Rautiainen et al., 2007; Eriksson et al., 2006; Eklundh
et al., 2001; Chen & Cihlar, 1996; Spanner et al,. 1990). Coniferous forests that are regularly
treated according to forest management practices tend to have relatively clumped and open
canopies. Thus, the role of the understory vegetation in forming boreal forest reflectance
cannot be neglected (Pisek et al., 2011).

1.3 Vegetation indices in LAl estimation

Canopy biophysical variables, such as LAI, can be estimated from remotely sensed data by
two types of algorithms: empirical models and methods that use physically-based radiative
transfer (RT) models. In empirical algorithms, the estimation is based on statistical
relationships modelled between concurrent ground reference measurements and surface
reflectance data. These relationships are typically expressed in the form of vegetation
indices (VI). VIs include various combinations of spectral bands designed to maximize the
sensitivity to vegetation characteristics while minimizing it to atmospheric conditions,
background, view and solar angles (Baret & Guyot, 1991; Myneni et al., 1995). Operational
LALI algorithms at global-scale typically make use of RT models, but the empirical models
usually outperform them in more localized applications.

The design of a VI that is optimally correlated with a particular vegetation property requires
good physical understanding of the factors affecting the spectral signal reflected from
vegetation. The sensitivity of a VI to a vegetation characteristic is typically maximized by
including bands with high sensitivity (e.g. high absorption) to the monitored entity and
bands mostly unaffected by the same entity. The simplest forms of VIs are simple
differences (Rp1-Rp2), ratios (Rp1/Rs2) and normalized differences [(Rpi-Rs2)/(Rp1+Rs2)] of
the reflectances of two spectral bands (Rpi, Rgz). (In Table 2 we give examples of common
VIs used in this study.) The most apparent characteristic of the green vegetation spectrum is
the pronounced difference between the red and NIR reflectances, the so called red-edge
around 700 nm. For example, the normalized difference vegetation index (NDVI) utilizes
this difference and has been shown to correlate with many interrelated vegetation attributes,
such as chlorophyll content, LAI, fractional cover, fAPAR and productivity.

The most commonly used VIs were designed for broadband sensors (one spectral band
spans about 50 nm or more) having red and NIR bands, such as NOAA AVHRR and
Landsat MSS (e.g. Tucker, 1979). However, the basic VIs in red and NIR spectral range
suffer from three well-known problems in LAI estimation: (1) they are not sensitive to LAI
over its natural range but tend to saturate already at moderate levels of LAI (2) they are
sensitive to canopy background variability, and (3) the VI-LAI relationships are dependent
on the vegetation type. These VIs are also sensitive to atmospheric noise and correction.

The saturation of NDVI occurs typically at LAI levels of 2 to 6 depending on the vegetation
type and environmental conditions (e.g. Sellers, 1985; Myneni et al., 1997). In general, NDVI
saturates as the fractional cover of vegetation approaches one, although LAI still increases
(e.g. Carlson & Ripley, 1998). Over conifer-dominated boreal forests, NDVI varies typically
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in a narrow range and shows poor relationships with canopy LAI (Chen & Cihlar, 1996;
Stenberg et al., 2004). The reason for this is the green understory, which results in a non-
contrasting background in the visible part of the spectrum (Nilson & Peterson, 1994; Myneni
etal., 1997).

Many modifications of basic VIs have been suggested to give better sensitivity to LAL
Typical modifications use other visible bands than red (e.g. the green vegetation index,
GNDVI, Gitelson et al., 1996), try to reduce soil effects based on the soil line concept (e.g. the
soil adjusted vegetation index, SAVI, Huete, 1988), or include short wave infrared (SWIR)
bands. Many modifications also attempt to reduce atmospheric effects (e.g. the enhanced
vegetation index, EVI, Huete et al., 2002). The soil line is based on the observation that soil
reflectances fall in a line in the red-NIR spectral space (e.g. Huete, 1988). Many VIs utilize
the parameterized soil line in their calculation, but these VIs have not been successful in
boreal forests as bare soil is rarely visible (e.g. Chen, 1996).

The sensitivity of shortwave infrared (SWIR) reflectance to forest biophysical variables has
been recognized for a long time (e.g. Butera, 1986; Horler & Ahern, 1986) and several Vls
utilizing the SWIR band have been designed. Rock et al. (1986) showed that the moisture
stress index (MSI), i.e. the ratio of SWIR reflectance to NIR reflectance, was an indicator of
forest damage. Later, the ratio has commonly been referred to as the infrared simple ratio
(ISR, Chen et al., 2002; Fernandes et al., 2003). The SWIR reflectance has also been used for
adjusting NDVI (Nemani et al., 1993) and SR (Brown et al., 2000). The reduced simple ratio
(RSR) has been used specifically for estimating LAI (Brown et al., 2000; Stenberg et al., 2004)
and has been employed also in regional and global-scale operational algorithms (Chen et al.,
2002; Deng et al., 2006). RSR seems to reduce the sensitivity to the type and amount of
understory vegetation, because background reflectance varies less in SWIR than in visible
and NIR (Brown et al., 2000; Chen et al., 2002). RSR has also some capability to unify
coniferous and broadleaved forest types, which reduces the need for land cover type specific
LAI algorithms. However, in comparison to ISR, the use of red band makes RSR sensitive to
atmospheric effects (Fernandes et al., 2003). However, although inclusion of SWIR
reflectance increases the sensitivity of VIs to LAI these indices also have a tendency to
saturate at high levels of LAI (e.g. Brown et al., 2000; Heiskanen et al., 2011).

Imaging spectroscopy provides much narrower spectral bands than typical multispectral
sensors. Due to the more detailed sampling of the vegetation spectra, such data can detect
specific absorption features of vegetation and therefore improve the estimation of vegetation
biochemical properties. For example, the SPOT 5 HRG sensors capture a spectral range from
500 nm to 1750 nm with four broad bands, in comparison to Hyperion’s 242 (10 nm wide)
bands between 400 nm and 2500 nm. At the canopy scale, the contents of biochemical
components and LAI are highly inter-related (e.g. Asner, 1998; Roberts et al., 2004).
Therefore, imaging spectroscopy could potentially improve LAI estimates. Furthermore,
there is potentially complementary information outside the typical spectral bands of
broadband sensors.

One way to utilize imaging spectroscopy data is to calculate narrow-band VIs in a similar
fashion as for broadband data but using narrower bands. The aim is to improve the
sensitivity of the VI to a specific vegetation biochemical property. For example, Ustin et al.
(2009) give a comprehensive review on VIs used as indicators of plant pigments
(chlorophyll, carotenoids and anthocyanin). The methods of estimating the non-pigment
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biochemical composition of vegetation (water, nitrogen, cellulose and lignin), on the other
hand, are reviewed by Kokaly et al. (2009). Many of the developed indices have been
designed to work at leaf level and do not necessarily upscale to canopy level, because of the
high sensitivity to canopy structure, background, solar and view geometry. Another
approach is to find iteratively the simple combinations of bands that give the best
correlation with empirical data (e.g. Mutanga & Skidmore, 2004; Schlerf et al., 2005).

Most chlorophyll indices exploit the information in the red edge around 700 nm (Ustin et al.,
2009). Imaging spectroscopy data also enables the estimation of the red edge position (REP),
which is particularly sensitive to changes in chlorophyll content (e.g. Dawson & Curran,
1998). Water indices, on the other hand, utilize the water absorbing regions in the SWIR
region of the spectrum (e.g. Gao, 1996; Zarco-Tejada et al.,, 2003). Those indices seem
particularly interesting for LAI estimation considering the importance of the SWIR spectral
region in estimating LAI using broadband indices.

There is growing evidence that imaging spectroscopy data can improve LAI estimates in
comparison to broadband data by reducing the saturation effects. Depending on the
vegetation type and range of LAI, different types of VIs have been found useful. However,
the red edge indices have been most effective in estimating LAI of crops (Wu et al., 2010),
grasslands (Mutanga & Skidmore, 2004) and thicket shrubs (Brantley et al., 2011). On the
other hand, indices based on NIR and SWIR bands have been successful in broadleaved (le
Maire et al., 2008) and coniferous forests (Gong et al., 2003; Schlerf et al., 2005; Pu et al.,
2008). The importance of the SWIR spectral region in estimating boreal forest LAI has also
been emphasized by multivariate regression analysis (e.g. Lee et al.,, 2004). However,
broadband sensors can also have advantages over narrowband sensors in LAI estimation,
for example, by being less sensitive to noise due to the sensor, atmosphere and background
(e.g. Broge & Leblanc, 2000). Although there are case studies from different biomes, the
performance of narrowband VIs has been poorly assessed over European boreal forests.

2. Case study
2.1 Aims

The aim of the study is to establish the extent to which vegetation indices can be used to
measure variation in LAI based on a test site in southern boreal forest in Finland. We
explore different VIs in LAI estimation during full leaf development. We compare the
performance of narrowband VlIs to traditional broadband VIs. The objective is to identify
VIs, which are least sensitive to species composition and, on the other hand, perform well in
coniferous stands.

2.2 Materials and methods
2.2.1 Study area

The study area, Hyytiéls, is located in the southern boreal zone in central Finland (61° 50'N,
24°17'E) and has an annual mean temperature of 3°C and precipitation of 700 mm.
Dominant tree species in the Hyytiéla forest area are Norway spruce (Picea abies (L.) Karst),
Scots pine (Pinus sylvestris L.) and Silver birch (Betula pendula Roth). Understory vegetation,
on the other hand, is composed of two layers: an upper understory layer (low dwarf shrubs
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or seedlings, graminoids, herbaceous species) and a ground layer (mosses, lichens). The
growing season typically begins in early May and senescence in late August. We measured
twenty stands from the Hyytidld forest area in July 2010 (see Section 2.2.2, Table 1). The
stands represented different species compositions that are typical to the southern boreal
forest zone in Finland.

Site Vegetation Site type  Tree height, Basal area, LAI
m m2/ha

A4  Pine mesic 15.8 204 177
A5 pine, understory broadleaf mesic 18.6 243  2.67
B2 spruce, understory birch mesic 7.5 10 2.64
D3 pine, understory spruce & birch  sub-xeric 17.8 205 237
D4  spruce, 25% birch mesic 16.5 275 372
E1 birch, spruce understory mesic 19.1 10.7 258
E5 50% spruce, 50% birch mesic 231 272 412
E6  50% spruce, 40% birch, 10% pine mesic 10.2 222 334
E7 Spruce mesic 13.3 31.7 391
F1  birch, spruce understory mesic 13.8 209 3.37
G4  spruce, 15% birch, 10% pine herb-rich 15.5 291 457
H3 Birch herb-rich 14.9 10.7  2.63
H5 Birch herb-rich 14.1 206 277
1 birch,' understory pine, spruce mesic 24 4 261

seedlings

T  Spruce mesic 24.6 56 3.43
U16 Birch mesic 14 21 2.69
U17 birch, 10% spruce herb-rich 11.7 27  3.35
U18 65% pine, 25% spruce, 10% birch  sub-xeric 16.5 26 345
U26 20% pine, 70% spruce, 10% birch  mesic 16.8 249 243
U27 5% pine, 90% spruce, 5% birch mesic 15.2 209 2.63

[pine = Scots pine, spruce = Norway spruce, birch = Silver birch]

Table 1. Study stands.

2.2.2 Ground reference measurements

The LAI-2000 Plant Canopy Analyzer (PCA) is one of the most commonly used optical
devices to measure LAIL The PCA’s optical sensor includes five concentric rings of different
zenith angles (0) (together covering almost a full hemisphere), which measure diffuse sky
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radiation between 320-490 nm (LI-COR, 1992). Measurements by the PCA performed below
and above the canopy yield canopy transmittances, T(0), for each ring. Finally, LAI is
calculated by numerical approximation of the integral (Miller, 1967):

/2
LAT=-2 [ In[T(6)]cossin 0d0 1)
0

There are four fundamental assumptions behind the LAI calculation method: 1. leaves
(needles) are optically black in the measured wavelengths (implying that canopy
transmittance closely corresponds to canopy gap fraction), 2. leaves (needles) are randomly
distributed inside the canopy volume, 3. leaves (needles) are small compared to the area of
view of the PCA’s rings, and 4. leaves (needles) are azimuthally randomly oriented. The LAI
estimate produced by Eq. 1 is commonly called effective LAI as the foliage elements are not
randomly organized but typically clumped (or grouped) together, which causes the estimate
produced by the PCA to be smaller than the “true” LAI (Chen et al., 1991; Deblonde et al.,
1994).

The LAI measurements can be done either with one or two PCA instruments. One PCA is
used for small plants such as crops, but for taller plants (e.g. trees), two units are necessary.
When only one instrument is used, the measurement is at first taken below and then above
the canopy. If two instruments are used, one instrument remains above the canopy and the
other one below the canopy. The use of two instruments is preferable since data are logged
nearly simultaneously with both sensors. The LAI estimate is calculated by combining
below and above canopy data. The measurements should be conducted under diffuse light
conditions; for example, when the sky has a full cloud cover or the sun angle is low (less
than 16 degrees). The radius of the sample plot should be at least three times the dominant
tree height as the PCA instrument has a relatively large opening angle.

In this study, the ground reference LAI (Table 1) was acquired by operating two LAI-2000
PCA instruments simultaneously. The instruments were intercalibrated before
measurements were performed. The reference sensor was located above the forest canopy
and set at a 15-second logging interval, while the other sensor was used inside the forest.
The sampling scheme was a “VALERI-cross” (Validation of Land European Remote Sensing
Instruments, VALERI) which consists of two perpendicular 6-point transects. The distance
between two measurement points was four meters, so that the sampling scheme
corresponded roughly to a 20 m x 20 m plot. Measurement height was kept constant at 0.7
meters.

2.2.3 Satellite data

In this study, we used narrowband spectral data obtained from a Hyperion satellite image.
Hyperion is a narrowband imaging spectrometer aboard the National Aeronautics and
Space Administration (NASA) Earth Observer-1 (EO-1) satellite launched in 2000. Hyperion
captures data in the “pushbroom’” manner in 7.7 km wide strips using 242 spectral bands.
The spectral range of Hyperion is 356-2577 nm with each band covering a nominal spectral
range of 10 nm. Each pixel in a Hyperion image corresponds to an area of 30 m x 30 m on
the ground. During an acquisition, a scene with a length of either 42 km or 185 km is
recorded. Hyperion is in a repetitive, circular, sun-synchronous, near-polar orbit at an
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altitude of 705.3 km measured at the equator. Thus, it can image almost any point on Earth
and it flies over all locations at approximately the same local time. The nominal revisit time
is 16 days, but due to the possibility of tilting the sensor, the potential revisit frequency is
higher. The scene used in this study was captured on 03 July 2010, and was provided
courtesy of the U.S. Geological Survey (USGS) Earth Explorer service.

Out of the potential 242 spectral bands, several lack illumination (due to the absorption in
the atmosphere or a decrease of incident solar spectral irradiance in the longer infrared
wavelengths) or have a very low spectral response. This leaves the user with 198 usable
spectral bands: bands 8-57 in the visible and NIR (wavelengths 436-926 nm) and bands 77-
224 in SWIR (wavelengths 933-2406 nm) (Pearlman et al., 2003). Hyperion images have
several known deficiencies which can be corrected using algorithms given in scientific
literature. Firstly, Hyperion suffers from systematic striping in along-track direction of the
image. The stripes are characteristic to all pushbroom sensors. Instruments belonging to
this broad class have a different receiving element for each image line. Hyperion has thus
256 radiation-sensitive elements for each spectral band, each seeing a separate 30 m strip
of the ground, thus producing the 7.7 km wide image. The striping can be broadly
divided into two classes, completely missing lines (due to non-functioning receiving
elements) and actual stripes (arising from slightly different sensitivities of the 256
receivers). We removed the actual striping using Spectral Moment Matching (SpecMM),
outlined by Sun et al. (2008), which uses the average and standard deviation statistics
between highly correlated bands to remove stripes. Next, the missing lines containing no
information were identified and corrected using the values from spatially adjacent pixels
using local destriping (Goodenough et al., 2003). The results of the destriping can be seen
in Figure 1.

& -Q-g;

Fig. 1. Hyperion band 8 (436nm) uncorrected image (left), and corrected using Spectral
Moment Matching and local destriping (right).

The second known defect in Hyperion imagery is a shift in the wavelength of each column
in the across track direction from the band central wavelength. This shift, known as spectral
smile, is also characteristic to pushbroom sensors and is a result of different optical paths
leading to the different receiving elements. The shift is a function of wavelength and the
position of the receiving element in the receiving array. As is the case for most instruments,
the “smile” manifests itself in Hyperion imagery as a “frown”, with the wavelengths of the
columns near the edges of each band shifting negatively from the bands average wavelength
(Figure 2). The smile was corrected using the pre-launch laboratory measured spectral shift
(Barry, 2001). We used interpolation to bring each individual pixel to a common central
wavelength based on the pre-launch calibration measurements.
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Fig. 2. Laboratory measured spectral shift of Hyperion (Barry, 2001).

The signal received by the Hyperion instrument consists of the photons scattered by the
atmosphere as well as the ground surface. To study surface reflectance, the influence of the
atmosphere needs to be eliminated in a process commonly known as atmospheric
correction. We performed this correction using an algorithm known as Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH, Matthew et al, 2000). FLAASH is
an absolute atmospheric correction that incorporates the MODTRAN4 radiation transfer
code to model the scattering and transmission properties of the atmosphere at the time of
image capture (San & Suzen, 2010). The FLAASH algorithm is incorporated into the ITT
Visual Information Solutions (ITT VIS) ENVI software. For processing, FLAASH requires an
input value for visibility to estimate atmospheric aerosol levels, in addition to basic
geographic and temporal details about the scene. The visibility can be recalculated by
FLAASH, using a ratio between dark pixels at 600 nm and 2100 nm. However, a more
accurate estimate of visibility was achieved using ground based optical measurements from
a weather station in the area.

The final processing stage is to resample the image pixels into a geographic coordinate
system, known as geocorrection. This was done using a polynomial transformation to a
vector base map from the National Land Survey of Finland. The Hyytidld area contains
numerous roads, providing a large number of easily identifiable potential ground control
points (GCPs) at intersections. Around 20 GCPs were selected, with a root mean square
error of 0.4 pixels being achieved. Bilinear interpolation was chosen for resampling the
image pixels due to the better geometric accuracy over nearest neighbour.

The final product is a geocorrected image of the surface hemispherical-directional
reflectance factors (HDRF) of the Hyytiéla area. To validate the atmospheric correction, we
compared the HDREF to a field measured reflectance factor. A soccer field of about 130 m by
60 m in the area was sampled during the summer of 2010 every two to three weeks using an
ASD handheld portable spectroradiometer covering a spectral range from 325-1075 nm. The
sampling was done using a transect approach with 42 measurements at around 1 meter
intervals. The final hemispherical-conical reflectance factor (HCRF) used for the comparison
is an average of the transect representing the average for the whole field. While no ground
measurements fell on the exact date of the Hyperion image, the ground measured spectra
was interpolated to dates between two measurements. After interpolation the ground
measured HCRF was binned into corresponding Hyperion bands using the spectral
response of each band.
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Fig. 3. Comparison of a soccer field’s spectral reflectance factors from in situ radiometric
measurements and corrected Hyperion data.

Overall, there is a very good correlation between the field measured reflectance and the
fully processed Hyperion reflectance (Fig. 3). An overall RMSE of 1.8% is achieved, which
gives us confidence in the validity of the pre-processing and atmospheric correction.
However, as the in situ spectrum is considerably smoother than the one measured from the
satellite, a considerable amount of noise is also present in the satellite-derived HDRF.

2.2.4 Vegetation indices and statistical analysis

First, we studied how HDRFs in single bands are correlated with LAI. Next, in order to
evaluate narrow-band VlIs for estimating LAI, we did regression analyses between various
VIs and LAIL We used two approaches to select narrowband indices: 1) We made a literature
survey for narrow-band VIs that have been designed to estimate foliage biochemical
components. (A collection of VIs showing the highest R? with LAI are shown in Table 2.) 2)
We calculated all the possible Ratio Indices (RI) and Normalized Difference Indices (NDI) of
Hyperion bands and correlated them with LAL In other words, the first approach also
contains VIs combining several bands and the second approach aims to identify the simple
two-band VlIs that best correlate with LAL

To facilitate the comparison of narrowband VIs with broadband indices, we calculated
synthetic HDRFs based on Landsat 7 ETM+ bands. The HDRFs were calculated according to
Jupp et al. (2002) using the ETM+ spectral sensitivity functions, and Hyperion’s central
wavelengths and bandwidths. Four broadband indices were calculated for comparison, SR,
NDVI, ISR and RSR (Table 2). All these indices have been used for LAI estimation in various
biomes. SR and NDVI were included for reference, and ISR and RSR because they have
shown best performance over conifer-dominated boreal forests (see 1.3).

We analyzed the data both by grouping all the sample plots together and separately for
coniferous plots (> 75% of the trees were Scots pines or Norway spruces). In the birch-
dominated stands, the variation in LAI was too small for reliable regression analysis.

We studied only linear relationships. The strength of the relationship was assessed by the
coefficient of determination (R2) and the root mean square error (RMSE).
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Abbr. Index Formula Reference Bands
applied
Indices concentrating on the red-edge
. . R.c)use etal. (1974), ETM+3,
SR Simple Ratio SR = Rerm+a/ Rermes Birth & McVey
ETM+4
(1968)
Normalized Difference [NDVI = (Rerm+4- ETM+3,
NDVI Vegetation Index RETM+3) / (RETM+4+RETM+3) Rouse et al. (1974) ETM+4
REP =700+ (((R773+1,5
REP Red Edge P OSitiOIl *R662) - Re,gz) / (R733-R692)) ](:i;l;;;)n & Plummer Zgg’ ?g;’
*(740-700) ’
Indices concentrating on pigment content
Pigment-Specific _
PSSRa Simple Ratio - chla PSSRa = Rgoz/Res1 Blackburn (1998) 681, 803
Water sensitive indices
MSI = Moisture Stress Index ISR = R /R EOCk etdal. (19816)’ ETM+4,
ISR = Infrared Simple Ratio HIM15/ RETM+ ehandeseta  IETM+5
(2002)
- *
ﬁiR (RElTM:z;I{ RETM;S) ETM+3,
RSR Reduced Simple Ratio |\, & +o-min = BEIMES Brown et al. (2000) |ETM+4,
/ (RETM+5_max —
ETM+5
RETM+5_min))

Table 2. Vegetation indices investigated in this study. The symbol R refers to the HDRF.
Subscripts refer to the applied ETM+ band or the central wavelength (in nm) of the
Hyperion band

2.3 Results
2.3.1 General characteristics of forest spectra

Two examples of forest reflectance factors (HDRFs) are presented in Figure 4. To allow
relating the vegetation spectra to satellite signals, the sensitivity functions of the
corresponding ETM+ bands are shown. Note the correspondence of ETM+2 with the green
peak, ETM+3 with the red local minimum and ETM+4 with the plateau in the NIR. The red-
edge slope (between ETM+ bands 3 and 4) is not covered by ETM+ bands. ETM+5 and
ETM+7 catch the signal in the shortwave infrared region (SWIR-1 (here: 1470-1800 nm) and
SWIR-2 (here: 2030-2360 nm) respectively), avoiding the two strong water absorption bands
in-between.

The average reflectance of coniferous stands is slightly lower in the green region and
decidedly lower in the NIR than the reflectance of birch stands. In SWIR-1 (covered by
ETM+5) the reflectances become more comparable, and in SWIR-2 (covered by ETM+7) the
signals almost meet.
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Fig. 4. Average conifer and birch-dominated stand spectra. The grey lines show the spectral
sensitivity of the ETM+ bands.

2.3.2 Regression analysis for single bands

The different average HDRF for the two forest types (Fig. 4) results in different correlations
of the satellite bands to LAI (Fig. 5).
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Fig. 5. Correlation coefficient of LAI with ETM+ and Hyperion spectral bands for all sample
stands, and separately for conifer sample stands.

The correlation coefficients for all stands varied between -0.6 and -0.038. All correlations
were negative, except for the two Hyperion bands centred at 2345 nm and 2355 nm. Two
important regions (green and NIR) had almost no correlation with LAI. Only the absorption
peak of chlorophyll produced a strong negative correlation at 681nm. The SWIR correlations
were also mostly negative.

For conifer stands, correlation coefficients varied between -0.7 and 0.6. The first peak was at
549 nm, in the middle of the green band, followed by a strong negative correlation in the red
with a peak at 681 nm. In the NIR a strong positive correlation was observed again. A slight
shoulder began at 712 nm, with a plateau at 752 nm. In the SWIR, correlation coefficients
were very close to those of all stands.

Fig. 5 also shows the correlation of the ETM+ bands to LAI The lower spectral resolution
averages wider wavelength ranges and therefore shows less variation in correlation
coefficients.
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2.3.3 Correlation of vegetation indices to LAI for all sample plots

The best broadband index analysed here was the Infrared Simple Ratio (ISR, R2 = 0.56),
followed by the Reduced Simple Ratio (RSR, R? = 0.40) (Table 3). The best narrowband
combinations (either RI or NDI) showed more potential with R2s exceeding 0.65 (Table 3,
Fig. 6). If there were several indices based on neighbouring bands (within 10 nm) we chose
the best one to Table 3.

VI Bands applied R2 RMSE RMSE RMSE
Conifer Broadleaf
broadband indices using simulated ETM+
ISR ETM+4, ETM+5 0.56 0.44 0.42 0.25
RSR ETM+3, ETM+4, ETM+5 0.40 0.52 0.59 0.31
NDVI ETM+3, ETM+4 0.09 0.64 0.68 0.51
SR ETM+3, ETM+4 0.04 0.66 0.73 0.46
narrowband indices using Hyperion
RI 1134, 1790 0.71 0.36 0.34 0.38
NDI 1134, 1790 0.68 0.38 0.36 0.39
RI 732,1790 0.67 0.38 0.42 0.31
RI 1074, 1790 0.67 0.38 0.40 0.34
RI 885, 1790 0.67 0.39 0.37 0.35
RI 854, 1790 0.66 0.39 0.37 0.34
RI 1003, 1639 0.66 0.39 0.39 0.26
RI 1044, 1790 0.66 0.39 0.39 0.37
NDI 7321790 0.66 0.39 0.42 0.33
NDI 1084, 1286 0.66 0.39 0.43 0.22

Table 3. Indices most correlated with LAI for all sample plots. RMSE was also calculated
separately for each forest class. Bands for Hyperion refer to the central wavelength (in nm).

The best band combinations for RI and NDI indices were very similar (Fig. 6). A strong
correlation with LAI existed for bands combining the region between 730 to 900 nm and
1130 to 1350 nm. Another interesting region was within SWIR-1; especially strong was the
correlation around 1780 and 1790 nm. These bands also showed up in the best performing
indices for all forest classes combined (Table 3).

The two best narrowband indices for all forest plots were the RI (R2 = 0.71, RMSE = 0.36)
and NDI (R? = 0.68, RMSE = 0.38) based on bands centred at 1134 and 1790 nm (Table 3).
This is consistent with the best broadband index (ISR) which also combines NIR and SWIR.
The same spectral regions are used by all the other best indices except two cases including a
band in the red-edge (732 nm). Examples of the strongest relationships are shown in Fig. 7.
However, when looking at the RMSE for conifer and broadleaf stands (Table 3) it became
apparent that for some indices (e.g. NDI based on 1084 nm and 1286 nm: RMSE = 0.43 for
conifers and RMSE = 0.22 for broadleaf) their LAI was correlated differently to the same VI.
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Fig. 6. Matrixes showing the R2 between LAI and simple narrowband indices calculated for
all possible combinations of Hyperion bands. The indices are defined as follows:
RI=Band1/Band2, and NDI=(Band1-Band2)/(Band1+Band2).
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Fig. 7. The relationship of LAI and two best ratio indices (RI).

2.3.4 Correlations for coniferous dominated forest plots

The performance of the broadband indices for conifer-dominated stands was much better
than over all sample stands. R2 now ranged from 0.60 to 0.79, and NDVI showed the best
correlation with LAI, followed by SR.

The best performing narrowband index over coniferous forest was neither RI nor NDI but
REP (R? = 0.89) calculated according to the method of Danson & Plummer (1995) (Table 2).
This index combined four bands in the visible and NIR; an area also represented in several
of the other indices which best correlated with LAI in coniferous stands.

The matrixes for all band combinations of Hyperion bands over conifer-dominated stands
(Fig. 8) showed wider spectral regions of high correlation than for all stands (Fig. 6).
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Fig. 8. Matrixes showing the R2 between LAI and two narrowband indices calculated for all
possible combinations of Hyperion bands for conifer-dominated stands.

758 4 -0.80 1 .
®  conifer ® conifer
571 ® —— conifer -0.82 1 . ——  conifer
= ™ RZ=0.88
756 1 R?=0.89 ~-0.84 -
E 755 ~
g —-0.86 - h
£ 00
o 754 - . 3
w - E-D.BB .
753 -
752 Z-0.0 - O
QO al @
751, O 3l -0.92 -
----- all, R?=0.14 @ ----- all, R2=0.17
750 . . ' i 0.94 - : _ Y
1 2 3 q 5 1 2 3 4 5
LAI LAI

Fig. 9. The relationship of LAI and the two best performing narrowband indices for conifer-
dominated stands.

Most of the indices with the highest correlations to LAI in coniferous stands used bands
around the red-edge. Almost all of them (e.g. the Pigment-Specific Simple Ratio Index for
chlorophyll a, PSSRa) applied the Hyperion band centred at 681nm, the peak of chlorophyll
a absorption. Exceptions were the RI and NRI using the bands centred at 1185 and 1790 nm
(i.e. combining NIR and SWIR), and RI and NDI using bands centred at 518 and 773 nm (i.e.
combining carotene absorption and NIR).

Scatterplots for the two best indices for coniferous stands are shown in Fig. 9. In both cases,
coniferous plots differed considerably from the other plots. This was indicated also by the
high RMSE for all stands (up to 1.42, Table 4). However, for indices using NIR and SWIR
(e.g. RI and NDI based on 1185 and 1790 nm) the differences were less pronounced. The VI
showing the lowest RMSE for all stands (0.49) was the RI (1185 and 1790 nm) with an R2 for
conifer stands of 0.86 and RMSE 0.29.
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VI Bands applied R2 RMSE RMSE All
stands
broadband indices using simulated ETM+
NDVI ETM+3, ETM+4 0.79 0.36 1.20
SR ETM+3, ETM+4 0.78 0.36 1.56
ISR ETM+4, ETM+5 0.71 0.42 0.44
RSR ETM+3, ETM+4, ETM+5 0.60 0.50 0.90
narrowband indices using Hyperion
REP 671,702,742, 783 0.89 0.26 1.29
NDI 681,773 0.88 0.27 1.02
RI 681,773 0.88 0.28 1.01
RI 1185, 1790 0.86 0.29 0.49
NDI 1185, 1790 0.86 0.30 0.50
NDI 681, 742 0.85 0.30 1.01
NDI 681, 824 0.85 0.30 0.98
RI 681, 742 0.85 0.31 0.99
NDI 518, 773 0.85 0.31 1.42
PSSRa 803, 681 0.85 0.31 1.30
RI 518, 773 0.85 0.31 1.39

Table 4. Indices most correlated with LAI in conifer-dominated plots. R2 and RMSE for
conifer-dominated stands, and RMSE separately for all stands. Bands for Hyperion refer to
the central wavelength (in nm).

2.4 Discussion

In our case study, the narrowband VIs provided more accurate LAI estimates than the
broadband VIs synthesized from the same data in a boreal forest study site. The best
narrowband combinations showed relatively strong linear relationships with LAI (R? >
0.65), although the Hyperion image was acquired in the middle of the growing season when
LALI is the highest. The relationships were even stronger if the analysis was restricted to the
conifer stands (R2 > 0.85). The results are promising as common broadband VIs tend to
saturate at the highest LAI values. The improvement of estimation accuracy is in agreement
with the previous studies, which have emphasized the potential of narrowband VIs for
estimating forest canopy LAI (e.g. Lee et al., 2004; Schlerf et al., 2005; Brantley et al., 2011;
Wu et al., 2010).

Most of the narrowband VIs showing the strongest relationships with LAI were based on
reflectances in the far red and at the red edge (680 —740 nm), NIR (e.g. 885 and 1134 nm) and
SWIR (e.g. 1639 nm and 1790 nm) wavelength regions (Figure 10). Many of the most
important spectral regions are not covered by the ETM+ spectral bands, and the spectral
regions are very narrow in comparison to the ETM+ bands.
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Fig. 10. Spectral regions used by the indices showing the strongest relationships with LAI
over all sample stands and conifer stands.

The NIR and SWIR spectral bands were particularly important when all sample plots were
analyzed together. This is in agreement with the best broadband indices, ISR and RSR. The
importance of NIR and SWIR bands has been emphasized also in previous studies testing
narrowband VIs for estimating forest LAI (e.g. Lee et al., 2004; Schlerf et al., 2005). The leaf
(needle) reflectance at those wavelengths is mainly controlled by water absorption, although
leaf biochemical components such as proteins, cellulose and lignin also contribute to
absorption in the infrared (e.g. Curran, 1989). The amount of water at the canopy level is
directly related to LAI, which explains strong correlations. The bands centered at 1134 nm
and 1790 nm are among the Hyperion bands, which are closest to the water absorption
regions centered at approximately 1200 nm and 1940 nm. The spectral bands close to the
water absorption regions at 970 nm and 1400 nm are also employed in some of the best
indices. The spectral bands of the broadband sensors are usually placed in the middle of the
atmospheric windows to avoid atmospheric absorption. However, it seems that narrow
spectral bands close to the water absorption regions are particularly interesting for
estimating LAIL In these wavelength regions, the reflectance seems to be relatively
insensitive to tree species or composition of the understory vegetation, as suggested earlier
by the studies using broadband indices (e.g. Brown et al., 2000).

When pure coniferous stands were studied separately, the relationships became stronger
and the far red and red edge spectral bands were included in several of the best VIs.
However, the improvement in accuracy relative to the best VI based on NIR and SWIR
reflectance (RI based on bands centered at 1185 nm and 1790 nm) was rather modest. The
best broadband indices were NDVI and SR, which are based on ETM+ red and NIR bands.
Usually, NDVI has shown relatively weak relationships with LAI in conifer dominated
boreal forest (e.g. Stenberg et al., 2004).

The strongest relationship with LAI was provided by the red edge position (REP) calculated
by the method proposed by Danson and Plummer (1995). In general, the REP is considered
to be sensitive to leaf and canopy chlorophyll content, so that increasing the amount of
chlorophyll, or LAl is related to the longer REP wavelength because of the widening of the
chlorophyll absorption region at approximately 680 nm (Danson & Plummer, 1995; Dawson
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and Curran, 1998; Sims & Gamon, 2002; Pu et al., 2003). In comparison to SWIR spectral
bands, the far red and red edge spectral region is sensitive to species composition, shown as
poor relationships over mixed vegetation. However, sometimes poor relationships between
the REP and LAI have been reported even for pure coniferous stands (Blackburn, 2002).
However, although the REP calculated in this study showed strong correlation with
coniferous LAI, the estimated wavelengths do not correspond to the Red Edge Inflection
Point (REIP), i.e. the steepest slope of the red-edge. The wavelengths are considerably
longer. Therefore, the unusual inverse relationship between REP and LAI in this study is
explained by the calculation method (Danson and Plummer, 1995). Alternative calculation
methods for REP are summarized, for example, by Pu et al. (2003).

Although many studies testing narrowband VIs for LAI estimation have stressed the
potential of the red edge and SWIR spectral regions, the specific spectral bands providing
the strongest relationships with LAI vary between the studies. Also in our case study, the
optimal band combinations provided stronger relationships with LAI than VIs collected
from the literature. This is somewhat expected, as the number of spectral bands and their
possible combinations is so large that empirically determined optimal band combinations
are likely to depend heavily on the local environmental conditions and type of satellite
image data. For example, approximately 150 useful spectral bands of Hyperion make more
than 20,000 two-band combinations. Because of this, the optimal indices cannot necessarily
be generalized very well. Furthermore, a large number of spectral bands combined with a
small number of sample plots increase the risk that the regression models are overfitted.
However, this should be mostly a problem with multivariate approaches (e.g. Lee et al,,
2004). Moreover, when comparing broadband and narrowband indices, it should be noted
that we used only synthesized ETM+ data and the results could differ to some extent if true
ETM+ data would have been used instead (Lee et al., 2004). This is because the synthetic
broadband data is affected by the lower signal-to-noise ratio of the narrow spectral bands,
even if data are averaged.

3. Future perspectives

Wider use of imaging spectroscopy data is hampered by the availability of the data. Today,
mostly airborne instruments are used to produce remote sensing data with high spectral
resolution. Airborne measurements are associated with relatively small spatial coverage and
high operating costs falling directly to data users. The Hyperion sensor used in this case
study is a rare exception: it is the only true imaging spectrometer in orbit today, providing
wide spectral coverage with uniform spectral resolution and contiguous bands. The scene,
however, is about to change. At the end of the decade (i.e., around 2020), NASA is planning
to launch the HyspIRI mission, providing narrowband data with routine global coverage
(Samiappan et al., 2010). Before HysplIRI, several national space programs are striving to
launch satellites with capability to produce narrowband data (e.g. the EnMAP instrument,
Segl et al., 2010). Therefore, the need for developing algorithms that would make use of the
advanced properties of narrowband data, compared to the more traditional multispectral
data, is evident.

In this case study, we used narrowband VIs to relate forest LAI to remotely sensed
reflectance signals. Historically, vegetation indices have been among the very first tools in
interpreting multispectral remote sensing data from vegetated areas. Later, physically-based
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reflectance modelling has taken over the role of the preferred method in large-scale
retrievals of vegetation biophysical variables. Similar developments may take place in the
interpretation of narrowband imaging spectroscopy data. However, let us first take a closer
look at narrowband indices as they are used in the current study.

As discussed above (section 1.3), VIs are usually treated as empirical (or, at least semi-
empirical) tools in remote sensing. However, it has been known for a long time that the
reflectance indices convey also some information on the physical processes related to the
interaction of light with plant elements. Indeed, Myneni et al. (1995) showed that the
common indices are actually derivatives of canopy reflectance and are physically related to
abundances of absorbing pigments. For this reason, indices commonly make use of two
spectral regions: one inside the spectral region where the absorption of a pigment is strong,
and one outside the absorption band. The use of red and near-infrared wavelengths thus
corresponds to measuring the abundance of one of the most vital plant pigments,
chlorophyll

Can such an interpretation be extended to narrowband indices? From the point-of-view of
the physics of radiative transfer, there is no fundamental difference between broad- and
narrowband indices. However, for calculating a spectral derivative, there is little use of well-
tuned and potentially much noisier narrow spectral bands. For detecting pigments whose
absorption spectra span tens, if not hundreds of nanometers, broadband indices seem a
much more robust tool. Further, vegetation indices, especially early ones like the NDVI,
have been shown both empirically and on the basis of theoretical studies, to be sensitive to
factors others than those of interest, such as soil brightness changes and atmospheric effects.
Most narrowband indices can be viewed as finely tuned versions of their older broadband
counterparts. Site-specific selection of wavelengths leads to a better explanatory power of
narrowband VIs as we also demonstrated in this case study. Unfortunately, the fine tuning
for eliminating environmental effects makes narrowband indices potentially even more site-
specific than broadband ones.

The comparison of narrowband and broadband VIs presented above did not concern indices
capturing truly narrowband effects, e.g. the photochemical reflectance index PRI (Gamon et
al.,, 1992) or various red edge parameters. Intrinsically narrowband VIs are based on effects
that cannot be detected from broadband data. These indices are not more site-specific than
broadband indices and do indeed, due to a finer spectral resolution, provide additional
information on vegetation cover on all scales. Similarly, the red edge parameters calculated
above make use of the high spectral resolution of narrowband data in a manner which is not
site-specific. Therefore, it is not surprising that they provide a good fit for estimating forest
stand variables regardless of dominating species.

An alternative to using narrowband indices would be to invert a full canopy reflectance
model: the goals of both methods are to retrieve information on some biophysical variable
of interest (Rautiainen et al.,, 2010). As discussed in this chapter, the theoretical
foundations of the two approaches are somewhat similar. However, obvious limitations of
index-based inversions lie in that it is not possible to define a spectral index sensitive to
only one process, nor is it possible to design a universal spectral index which would be
optimal for all applications everywhere and all the time (Verstraete & Pinty, 1996).
Further, since vegetation indices carry only part of the information available in the
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original channel reflectances, they assume that the information of interest is contained
exclusively in the observed spectral variations. VIs also often neglect the effects of surface
anisotropy associated with the specific geometry of illumination and observation at the
time of the measurements (Govaerts et al.,, 1999). Last, but not least, a fundamental
shortcoming of the index-based approach lies in its potentially wide application area. A
user not directly working in the field of remote sensing science may be distracted by a
statistically strong dependence between a variable of interest (e.g. an ecological parameter
describing diversity) and a vegetation index. However, canopy reflectance signals can
carry information only on what are known as state variables of radiative transfer
(abundances of optically active substances, canopy amount and structure, etc.). Other
variables may be correlated with one or more of the state variables, but before drawing
conclusions based on such correlations, the nature and application range of the correlation
should be clarified.

Naturally, physical canopy reflectance models are immune to the problems listed above.
When working in the forward mode, a modern reflectance model can reliably predict the
spectral reflectance signal of a vegetation canopy given the required inputs (e.g.
Widlowski et al., 2007). When run in inverse mode, the models should be able to produce
an estimate of the state variables of radiative transfer based on measured spectral
reflectance values. Unfortunately, due to the large number of the state variables and the
mathematical nature of the inverse problem, a robust result is difficult to achieve (Baret &
Buis, 2008). Despite the present-day problems with inverting canopy reflectance models, it
is clear that physical models hold a clear advantage over index-based biophysical
parameter estimation, especially when using imaging spectroscopy data. Physical models
account for changes in environmental conditions and estimate all state variables
simultaneously. They also have the advantage of failing if unphysical data is fed to them
(e.g. due to sensor failure or preprocessing error) instead of producing unrealistic results.
The problem with the large number of state variables can be solved by the larger
information content of imaging spectroscopy data (compared with that produced by
multispectral sensors) and development of novel physically based parameterizations
allowing a more efficient description of canopy structure. However, until the full potential
of imaging spectroscopy has been utilized by the developers of physical models,
narrowband vegetation indices remain valuable tools in exploring the richness of high
spectral resolution data.
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1. Introduction

Plant diseases and pests can affect a wide range of commercial crops, and result in a
significant yield loss. It is reported that at least 10% of global food production is lost due to
plant diseases (Christou and Twyman, 2004; Strange and Scott, 2005). Excessive pesticides
are used for protecting crops from diseases and pests. This not only increases the cost of
production, but also raises the danger of toxic residue in agricultural products. Disease and
pest control could be more efficient if disease and pest patches within fields can be
identified timely and treated locally. This requires obtaining the information of disease
infected boundaries in the field as early and accurately as possible. The most common and
conventional method is manual field survey. The traditional ground-based survey method
requires high labor cost and produces low efficiency. Thus, it is unfeasible for large area.
Fortunately, remote sensing technology can provide spatial distribution information of
diseases and pests over a large area with relatively low cost. The presence of diseases or
insect feedings on plants or canopy surface causes changes in pigment, chemical
concentrations, cell structure, nutrient, water uptake, and gas exchange. These changes
result in differences in color and temperature of the canopy, and affect canopy reflectance
characteristics, which can be detectable by remote sensing (Raikes and Burpee 1998).
Therefore, remote sensing provides a harmless, rapid, and cost-effective means of
identifying and quantifying crop stress from differences in the spectral characteristics of
canopy surfaces affected by biotic and abiotic stress agents.

This chapter introduces some successful studies about detecting and discriminating yellow
rust and aphid (economically important disease and pest in winter wheat in China) using
field, airborne and satellite remote sensing.

2. Detecting yellow rust of winter wheat by remote sensing

Yellow rust (Biotroph Puccinia striiformis), also known as stripe rust, is a fungal disease of
winter wheat (Triticum aestivum L.). It produces leaf lesions (pustules), which are yellow in
color and tend to be grouped in patches. Yellow rust often occurs in narrow stripes, 2-3 mm
wide that run parallel to the leaf veins. Yellow rust is responsible for approximately 73-85%
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of recorded yield losses, and grain quality is also significantly reduced (Li et al. 1989).
Consequently, effective monitoring of the incidence and severity of yellow rust in
susceptible regions is of great importance to guide the spray of pesticides and to provide
data for the local agricultural insurance services. Fortunately, remote sensing technology
provides a possible way to detect the incidence and severity of the disease rapidly.

The interaction of electromagnetic radiation with plants varies with the wavelength of the
radiation. The same plant leaves may exhibit significant different reflectance depending on
the level of health and or vigor (Wooley 1971, West et al. 2003, Luo et al., 2010). Healthy and
vigorously growing plant leaves will generally have

1. Low reflectance at visible wavelengths owing to strong absorption by photoactive
pigments (chlorophylls, anthocyanins, carotenoids).

2. High reflectance in the near infrared because of multiple scattering at the air-cell
interfaces in the leaf’s internal tissue.

3. Low reflectance in wide wavebands in the short-wave infrared because of absorption by
water, proteins, and other carbon constituents.

The incidence and severity of yellow rust can be monitored according to the differences of
spectral characteristics between healthy and disease plants. In this chapter, we will report
several successful studies on the detection and identification of yellow rust in winter wheat
by remote sensing.

2.1 Detecting and discriminating yellow rust at canopy level

Hyperspectral remote sensing is one of the advanced and effective techniques in disease
monitoring and mapping. However, the difficulty in discriminating a disease from common
nutrient stresses largely hampers the practical use of this technique. This is because some
common nutrient stresses such as the shortage or overuse of nitrogen or water could have
similar variations of biochemical properties and plant morphology, and therefore result in
similar spectral responses. However, for the remedial procedures for stressed crops, there is
a significant difference between disease and nutrient stresses. For example, applying
fungicide to water-stressed crops would lead to a disastrous outcome. Therefore, to
discriminate yellow rust from common nutrient stresses is of practical importance to crop
growers or landowners.

The specific objectives of this study are to: (1) systematically test the sensitivity and
consistency of several commonly used spectral features to yellow rust disease during major
growth stages; (2) for those spectral features that are consistently sensitive to yellow rust
disease, we will further examine their sensitivity to nutrient stresses to determine whether
there are specifically sensitive to yellow rust disease, but insensitive to water and nitrogen
stresses.

2.1.1 Materials and methods
2.1.1.1 Experimental design and field conditions

The experiments were conducted at Beijing Xiaotangshan Precision Agriculture
Experimental Base, in Changping district, Beijing (40°10.6’'N, 116°26.3’E) for the growing
seasons of 2001-2002 and 2002-2003. Table 1 summarizes the soil properties including
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organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and
available potassium for both growing seasons. Three cultivars of winter wheat used in 2001-
2002 experiment (2002 Exp) were Jingdong8, Jing9428 and Zhongyou9507, while the
cultivars used in 2002-2003 (2003 Exp) were Xuezao, 98-100 and Jing411. All the cultivars
applied in both growing seasons included erective, middle and loose with respect to the

canopy morphology.
Disease inoculation . .
Items . Nutrient stress experiment
experiment
Growth period Sep 2002-Jun 2003 Sep 2001-Jun 2002

Organic matter 1.42%-1.48%
Total nitrogen 0.08%-0.10%

Alkali-
Top soil hydrolysis 58.6-68.0 mg kg1
. nitrogen
nutrient status Jab]
(0-0.3m depth) Available ) 4
phosphorus 20.1-55.4 mg kg
Rapidly
available 117.6-129.1 mg kg1
potassium
Cultivars Xuezao, 98-100, Jing411

Normal; YR1: 3mg 100
ml spores solution; YR2:
9mg 100-1 ml spores
solution; YR3: 12mg 100

Treatments .
ml spores solution (all

1.21%-1.32%
0.092%-0.124%

68.8-74.0 mg kg1

25.2-48.3 mg kg1

96.6-128.8 mg kg1

Jingdong8, Jing9428,
Zhongyou9507

Normal: 200 kg ha-! nitrogen,
450 m3 ha-! water;

W-SD: 200 kg ha-! nitrogen,
225 m3 ha'l water;

W-SED: 200 kg ha-! nitrogen, 0
m3 ha-1 water;

N-E: 350 kg ha nitrogen, 450
m3 ha-1 water;

treatments applied 200 kg N-D: 0 kg ha-! nitrogen, 450 m3

ha! nitrogen and 450 m3
ha-1 water)

Spectral reflectance
measurements (on day after 207, 216, 225, 230, 233
sowing)

hal water;

W-SED+N-E: 350 kg ha-!
nitrogen, 0 m3 ha! water; W-
SED+N-D: 0 kg ha-! nitrogen, 0
m3 hal water;

196, 214, 225, 232, 239

Table 1. Basic information of disease inoculation experiment and nutrient stress experiment

For 2002 Exp, six stress treatments of water and nitrogen were applied, and the treatments
were based on local conditions, which usually suffered from yellow rust in the northern part
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of China. Each treatment was applied on 0.3 ha area, and the treatments were 200 kg ha-!
nitrogen and 225 m?3 ha-! water (slightly deficient water, W-SD),200 kg ha-! nitrogen and no
irrigation (seriously deficient water, W-SED), 350 kg ha nitrogen and 450 m3 ha! water
(excessive nitrogen, N-E), no fertilization and 450 m3 ha-1 water (deficient nitrogen, N-D),
350 kg ha nitrogen and no irrigation (seriously deficient water and excessive nitrogen, W-
SED+N-E), and no fertilization and no irrigation (seriously deficient water and deficient
nitrogen, W-SED+N-D). A 0.3 ha reference area (Normal) was applied with the
recommended rate which received 200 kg ha? nitrogen and 450 m3 ha! water. Three
cultivars were evenly distributed in each treatment plot.

For 2003 Exp, according to the National Plant Protection Standard (Li et al. 1989), three
levels of concentration of summer spores of yellow rust were applied, and they were 3 mg
100! ml! (Yellow rust 1, YR1), 9 mg 1001 ml? (Yellow rust 2, YR2) and 12 mg 1001 ml-1
(Yellow rust 3, YR3), with a dosage of 5 ml spores solution per square meter. The reference
area (Normal) that was not inoculated yet was applied with the recommended amount of
fungicide to prevent the occasional infection. Each treatment involved 1.2 ha area, with even
constitution of three cultivars. All plots in 2003 Exp received the recommended rates of
nitrogen (200 kg ha!) and water (450 m3 ha).

2.1.1.2 Canopy spectral measurements

A high spectral resolution spectrometer, ASD FieldSpec Pro spectrometer (Analytical
Spectral Devices, Boulder, CO, USA) fitted with a 25 field of view fore-optic, was used for
in-situ measurement of canopy spectral reflectance for both 2002 Exp and 2003 Exp. All
canopy spectral measurements were taken from a height of 1.3m above ground (the height
of the wheat is 90+3 cm at maturity). Spectra were acquired in the 350-2,500 nm spectral
range at a spectral resolution of 3 nm between 350 nm and 1,050 nm, and 10 nm between
1,050 nm and 2,500 nm. A 40 cm % 40 cm BaSO4 calibration panel was used for calculation of
reflectance. All irradiance measurements were recorded as an average of 20 scans at an
optimized integration time. Prior to subsequent preprocessing, all spectral curves were
resampled with 1 nm interval. All measurements were made under clear blue sky conditions
between 10:00 and 14:00 (Beijing Local Time).

The spectral measurements were taken 5 times from 196 days after sowing (DAS) to 239
DAS for 2002 Exp, which covered the growth stages of stem elongation, booting, anthesis
and milk development. For 2003 Exp, the spectral measurements were taken 5 times from
207 DAS to 233 DAS, which covered the growth stages of booting, anthesis and milk
development. The detailed measurement dates for both experiments were given in Table 1.
The stem elongation and anthesis stages are essential for the control of yellow rust
development, whereas the milk development stage is important for yield loss assessment.

2.1.1.3 Selection of spectral features

The spectral features that we adopted were related to several commonly used vegetation
indices (VIs), which were proved to be sensitive to variations of pigments and stresses.
Furthermore, in order to conduct a thorough investigation of various types of spectral
features, we also included a number of spectral features that were based on derivative
transformation and continuum removal transformation (Gong et al. 2002; Pu et al
2003;2004). Therefore, the total 38 spectral features are shown in Table 2.
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Variable Definition Description Literatures
Derivative transformed spectral variables
Maximum val Blue edge covers 490-530nm. Dy is a
D of Lot derivative MeXimum value of Ist order Gong et al., 2002
b 1 derivatives within the blue edge of 35 & v
within blue edge bands
b Wavelength at Dy, Ay is wavelength position at Dy, Gong et al., 2002
Sum of 1st Defined by sum of 1st order derivative
SDy derivative values values of 35 bands within the blue Gong et al., 2002
within blue edge edge
Maximum value Yellow edge covers 550-582nm. Dy is a
of 1st derivative maximum value of 1st order
Dy within yellow derivatives within the yellow edge of Gong et al., 2002
edge 28 bands
Ay Wavelength at Dy A, is wavelength position at Dy Gong et al., 2002
?igglv(;iiisetvalues Defined by sum of 1st order derivative
SDy s values of 28 bands within the yellow  Gong et al., 2002
within yellow edee
edge &
Maximum value Red edge covers 670-737nm. D; is a
D: of 1st derivative o oM Val.ue.Of Ist order Gong et al., 2002
1 derivatives within the red edge of 61
within red edge bands
A Wavelength at D, Ar is wavelength position at D, Gong et al., 2002
Sum of 1st . R
SD: derivative values Defined by sum of 1S.t o'rder derivative Gong et al., 2002
e values of 61 bands within the red edge
within red edge
Continuous removal transformed spectral features
DEP550-750 The depth of the In the range of 550nm-750nm
DEP920-1120 feature minimum In the range of 920nm-1120nm Pu et al.. 2003:2004
. relative to the v ’
11);2:51070 hull In the range of 1070nm-1320nm
WID550-750 The full In the range of 550nm-750nm
WID920-1120 wavelength In the range of 920nm-1120nm Pu et al.. 2003:2004
WID1070- width at half M 4
1320 DEP (nm) In the range of 1070nm-1320nm
%%EASSO_ The area of the  In the range of 550nm-750nm
absorption
AREA920- feature that is the In the range of 920nm-1120nm Pu et al., 2003;2004
1120
product of DEP

AREA1070-  4nd WID

1320 In the range of 1070nm-1320nm
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Variable

Definition

Description

Literatures

VI-based variables

GI

MSR

NDVI

NBNDVI

NRI

PRI

TCARI

SIPI

PSRI

PhRI

NPCI

ARI

TVI

CARI

Greenness Index

Modified Simple
Ratio

Normalized
Difference
Vegetation Index

Narrow-band
normalised
difference
vegetation index
Nitrogen
reflectance index
Photochemical
Physiological

Reflectance Index

The transformed
chlorophyll
Absorption and

Reflectance Index

Structural
Independent
Pigment Index

Plant Senescence

Reflectance Index

The Physiological

reflectance index

Normalized
Pigment

Chlorophyll ratio

Index

Anthocyanin

Reflectance Index

Triangular
Vegetation Index

Chlorophyll

Absorption Ratio

Index

Rss4/Re77

(Rsoo/Re70-1) / (Rsoo/ Rezo+1)1/2

(Rnir-RRr)/ (Rnir+RR), where Rair
indicates 775-825nm, Ry indicates
650nm-700nm, that include most key
pigments

(Rss0-Reso) / (RssotReso)

(Rs70-Re70) / (Rs70+Re70)

(Rs31-Rs70) / (Rs31+Rs70)

3*[( Rroo- Re70)-0.2*( R700- Rss50)*( Rroo/
Re70)]

(Rsoo-Russ) / (Rsoo-Reso)

(Reso-Rs00) / R7s0

(Rss50-Rs31) / (Rss0+Rs31)

(Reso-Ra30) / (Resot+Raso)

ARI=(Rs50)-1-(R700)!

0.5[120 (R750—R550) -200 (R670—R550)]

| (a67O+R670+b) | /(a2+1)1/2)x(R700/ R67o)

a= (R700-R550)/150, b= R550-(a X 550)

Zarco-Tejada et al.,
2005

Chen, 1996;
Haboudane et al.,
2004

Rouse et al., 1973

Thenkabail et al.,
2000

Filella et al., 1995

Gamon et al., 1992

Haboudane et al.,
2002

Pefiuelas et al.,
1995

Merzlyak et al.,
1999

Gamon et al., 1992

Pefiuelas et al.,
1994

Gitelson et al.,
2001

Broge and Leblanc,
2000; Haboudane
et al., 2004

Kim et al., 1994
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Variable Definition Description Literatures

Disease Wat
DSWI Stlrseizsfn d;er (Rsoz+Rs7)/ (Ruesr+Res2) Galvio et al., 2005

. H ’
Moisture Stress unt and rock

MSI Inde Rie00/ Rs19 1989; Ceccato et
) al., 2001
Shortwave
Fensholt and

SIWSI Infrared Water  (Rsso-Ri640)/ (Rss0+Rie40) S:Efih?)lt ,3;1003

Stress Index

Red-Edge

i Merton and

RVSI Vegetation Stress [(R712+R752)/2]-R732 Hontington, 1999

Index

Modified

Chl hyll Daughry et al.,
MCARI Abs%rr(giio}; o RorRen)02Ran-Rass)]/ (Reon/Rer) oo &

Reflectance Index
WI Water Index Rooo/Rozo Pefiuelas et al.,

1997

Table 2. Definitions of spectral features used in this study

2.1.1.4 Preprocessing and normalization of spectral reflectance data
Aggregating spectral reflectance data

As the first step, all spectra were processed with the following transformation to suppress
possible difference in illumination. The spectral regions with wavelength of 1330-1450 nm,
1770-2000 nm and 2400-2500 nm were removed due to strong absorption by water vapor.
We then normalized the spectral curves by dividing the mean band reflectance of the curve
(Yu et al., 1999). The normalized reflectance for the band; is given as:

Ref{ = _Refi

n

1
;(;Refi)

where Ref!” is the normalized reflectance for band;; Ref; is the original reflectance of the band; n
is the total number of bands. Fig. 1(a) shows a plot of unnormalized Ref; versus band
wavelength for six observations (three YR3 curves and three Normal curves) on 233 DAS. Fig.
1(b) shows the corresponding curves in Fig.1(a) after normalization. The normalization clearly
separated the diseased spectra from the normal spectra especially over the near infrared region
(approximately from 770 nm to 1300 nm). The benefit of eliminating spectral difference caused
by the change of illumination conditions was also mentioned by Yu et al. (1999).

Normalization of the difference in measuring dates

As shown in Table 1, although both experiments conducted in five growth stages in 2002
and 2003, most measurement dates were not consistent, except for 255 DAS. Hence, to
improve the comparability of two datasets, we adapted the 2002 Exp data to match the dates
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Fig. 1. Comparison between original spectra and normalized ones
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of 2003 Exp, by using a linear interpolation method. The reflectance curve of a certain date
could be obtained based on the spectra from the adjacent data before and after the
measurement date (using days after sowing as a time scale). Each band of the spectra should
be processed as:

DAScurrent B DASbefore
DASafter - DASbefure

Ref current — Ref before — (Ref before — Ref afte‘r)

where Refuurrent represents the reflectance transformed from the date corresponding to an
ideal date in 2003 Exp; Refyeore and Refuser represent reflectances, respectively, from DA Spefore
and DASqser; DAScurrens indicates an ideal date in 2003 Exp while DASpepre and DAS,s.r are the
adjacent dates in 2002 Exp before and after the ideal date in 2003 Exp.

Fig. 2 provides an example of the progress of the normalization of measurement dates. The
averaged reflectance at central wavelengths of green band (560 nm) and near-infrared band
(860 nm) of Landsat-5 TM for normal samples were plotted against the measured dates in
both 2002 Exp and 2003 Exp. The date normalized reflectance values were marked as
triangle symbol in the graph. Through this step, the datasets collected in these two years
could be considered as acquired in the same dates, which thereby facilitated the subsequent
comparisons and analysis.

0.8 —r 3
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: ; —-2003-560nm

0.7 1 : —0-2002-860nm || 2 5
E —5-2003-860nm £
u%:u 06 | A Normalized %
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© 04 - o
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o] 5]
=z L =z

0.2 W 0.5

0.1 T T T T O

190 200 210 220 230 240 250 260
Days after sowing

Adaptation of average reflectance of normal samples at 560 nm (central wavelengths of green band of
Landsat-5 TM) and 860 nm (central wavelengths of near-infrared band of Landsat-5 TM) to match the
dates of 2003 Exp, by using a linear interpolation method

Fig. 2. An example for normalization of measuring dates
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Normalization of the difference from cultivars and soil backgrounds

The canopy spectra of winter wheat were not only supposed to respond to stresses, but
are also determined and influenced by several other aspects such as cultivars and soil
properties. Although the both 2002 Exp and 2003 Exp were conducted in the same fields
that had approximately identical climate and environmental conditions, the difference in
cultivars and soil properties between 2002 Exp and 2003 Exp should not be ignored (Table
1). To minimize this discrepancy, we calculated a ratio spectral curve for each of
measured dates (after the normalization of the measuring dates) by the averaged spectral
curve from normal samples in 2002 Exp divided by the averaged spectral curve from
normal samples in 2003 Exp, resulting in a total of five ratio curves corresponding to each
growth stage (Fig. 3). After that, all the spectral data measured at different growth stages
were multiplied by the corresponding ratio curves to yield a set of normalized spectra. It
should be pointed out that the present normalization processing to raw spectral
measurements will only enhance the comparability between the 2002 Exp and 2003 Exp
with little change in internal relations among different treatments because all the spectral
data at one growth stage were processed with the same ratio curve. The ultimate goal of
all these preprocessing and normalization steps above is to mitigate effects of the
variation of illumination conditions, measurement dates, cultivars and soil properties
between the 2002 Exp and 2003 Exp on target spectra.

2.1.1.5 Spectral features calculation and statistical analysis

With the spectra normalized using the methods above, we calculated 38 spectral features.
An analysis of variance (ANOVA) was employed to investigate the spectral differences
between the normal samples and all forms of stressed samples. Firstly, on different
measured dates, both the yellow rust disease data and nutrient stressed data were compared
with the normal data by ANOVA. For those spectral features that were consistently
sensitive to yellow rust disease, we not only tested their differences between the normal
treatment and different forms of stresses, but also tested the differences between various
kinds of nutrient stresses and varying levels of disease stresses with ANOVA. Statistical
analyses were conducted using SPSS 13.0 procedure.

2.1.2 Results
2.1.2.1 Spectra after normalizations

The spectral ratio curves in Fig 3 reflect the deviations between 2002 Exp and 2003 Exp’s
reflectance datasets at different wavelength positions. The ratio value close to 1.0 indicates
no difference in reflectance exists between the two years. Generally, the ratio values ranged
from 0.7 to 1.3, with an uneven distribution along the wavelength axis (Fig 3). The ratio
tended to deviate from 1.0 in the regions of 350 - 730 nm, 1450 - 1570 and 2000 - 2400 nm, but
stayed around 1.0 in the regions of 730 - 1330 nm and 1570 - 1770 nm. To assess the
improvement in comparability, we examined the difference of normalized datasets of
normal samples between 2002 Exp and 2003 Exp through an ANOVA with all 38 spectral
features. The result showed that the differences of all spectral features were insignificant at
all growth stages (p-value>0.05), with an average p-value (for all measuring dates) of 0.94,
indicating a relatively high level of similarity between two datasets. Therefore, we
confirmed that such normalization processes minimized the spectral difference originated
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from variation of illumination and different measurement dates, etc., and enabled more
rational comparisons among different treatments.

2.1.2.2 Spectral responses to different forms of stresses

The result of ANOVA between normal samples and different forms of stress samples
indicated that all spectral features had a response (defined as p-value<0.05) to at least one
type of stresses at one growth stage, except for the WID1070-1320, which had no response to
any form of stresses at all growth stages. Total 37 spectral features responded to water
associated stresses (W-SD, W-SED, W-SED+N-E, W-SED+N-D) at least at one growth stage,
followed by 35 spectral features to yellow rust disease, whereas only15 spectral features had
a response to solely nitrogen stress (N-E, N-D). As summarized in Table 3, most spectral
features were sensitive to yellow rust infection at least at one growth stage, except for A, A
and WID1070-1320. In addition, most spectral features tended to be more sensitive at later
growth stages than at the early stages. For example, several features such as DEP920-1120,
AREA920-1120, Dy, GI, NDVI and Triangular Vegetation Index (TVI) only had a response to
yellow rust at the last growth stage in our study (233 DAS). However, for the sake of
diagnosis, the spectral features with a consistent response to yellow rust during the
important growing period would be much more valuable. Therefore, those spectral features
that were sensitive to the yellow rust at 4 out of 5 growth stages were selected as candidates
for disease diagnosis. This yielded four vegetation indices (VIs): PRI, PhRI, NPCI and ARL

2.1.2.3 One way ANOVA of four disease sensitive spectral features

Particularly for the four identified VIs that closely associated with yellow rust disease, a
throughout one way ANOVA was conducted to compare their differences between the
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Days after sowing
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Spectral features

< =2 2

<L 22 2 2L 2 2 2 2 2 =2 2

2.2 2 2 2 2 2

< =2

2 =2 2 =2
2 2 2 2 2 2 =2 2 =2 2

< 2

Table 3. Responses of spectral features to yellow rust



Crop Disease and Pest Monitoring by Remote Sensing 43

normal sample and various kinds of stressed samples. Moreover, their differences among
each pairs of stress forms were also compared. We conducted this ANOVA based on the
data on 207 DAS, 225 DAS and 233 DAS respectively, which were essential growth stages
for carrying out fungicide spraying and yield loss assessing procedures. In addition to the p-
value of ANOVA, we also provided the change direction of spectral features. Positive sign
indicates the average spectral feature value of diseased or nutrient stressed samples is
greater than that of normal samples, and negative sign indicates the opposite cases to the
positive sign. As shown in Table 4, it was observed that for the treatments of N-E and N-D,
all four VIs failed to show any response at all growth stages. For the results of other
treatments, the responses of four VIs behaved in a varied pattern at three growth stages.

For the results on 207 DAS (Table 4a), compared to the normal samples, the NPCI and ARI
had responses to all three levels of yellow rust treatments (YR 1, YR 2, YR 3), and appeared
to be more sensitive than PRI and PhRI. For nutrient stresses, the PRI, NPCI and ARI were
sensitive to W-SED and W-SED+N-E treatments. Among them, NPCI and ARI showed
stronger responses (p-value<(0.01) to W-SD, W-SED, W-SED+N-E and W-SED+N-D
treatments than the other two VIs. For the comparisons between diseased samples and
nutrient stressed samples, significant differences between W-SED and W-SED+N-E
treatments and YR2 and YR3 treatments were identified for PRI, NPCI and ARI. Moreover,
the change directions of the three VIs for diseased and nutrient stressed samples were
identical. At this 207 DAS growth stage, PhRI did not show a significant response to any of
three levels of disease treatments, but responded to W-SD, W-SED and W-SED+N-E
treatments. It is interesting that the change direction of diseased samples of PhRI was
contrary to that of the nutrient stressed samples, suggesting a discriminating potential of the
index.

For the results on 225 DAS (Table 4b), compared to the normal samples, all four VIs revealed
a clear response to level 2 and level 3 of yellow rust treatments (YR2, YR3). For nutrient
stresses, PRI, NPCI and ARI also appeared to be sensitive to W-SD, W-SED, W-SED+N-E
and W-SED+N-D treatments. However, PhRI was insensitive to all nutrient stresses. In
addition, when we looked at the difference of those VIs between diseased samples and
nutrient stressed samples, only PhRI showed clear differences between YR2 and YR3
treatments and W-SD, W-SED, W-SED+N-E, and W-SED+N-D treatments. Although a
significant difference between YR3 treatment and W-SED treatment also existed for ARI and
NPCI, the change directions of both treatments were identical. However, for PhRI, the
change directions of all levels of disease treatments were different from those of the nutrient
stress treatments.

For the results on 233 DAS (Table 4c), with further development of disease symptoms,
compared to the normal samples, all four indices showed responses to all three levels of
disease treatments. Comparing to YR1 treatment, the four VIs had shown a stronger
significant level (p-value<0.01) for YR2, YR3 treatments. For nutrient stresses, PRI, NPCI and
ARI exhibited clear responses to W-SED, W-SED+N-E and W-SED+N-D treatments as well.
For comparisons between diseased and nutrient stressed samples, PRI and NPCI appeared
to be significantly different between YR2 and YR3 treatments and W-SD treatment.
However, the change directions of both treatments were identical. Unlike the other three Vls,
PhRI remained insensitive to the nutrient stresses, but was significantly different among all
levels of disease treatments (YR1, YR2, and YR3) and all forms of nutrient stresses. More
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*mean difference is significant at 0.950 confidence level; **mean difference is significant at 0.990
confidence level;*** mean difference is significant at 0.999 confidence level. (+) means the average
spectral feature value of diseased or nutrient stressed samples greater than that of normal samples; or
means the average spectral feature value of nutrient stressed samples greater than that of diseased
samples; (-) means the opposite cases to the case of (+). The definitions of treatments are as follows:
“Normal” represents normal samples; “W-SD” represents samples treated with slightly deficient water;
“W-SED” represents samples treated with seriously deficient water; “N-E” represents samples treated
with excessive nitrogen; “N-D” represents samples treated with deficient nitrogen; “W-SED+N-E”
represents samples treated with seriously deficient water and excessive nitrogen; “W-SED+N-D”
represents samples treated with seriously deficient water and deficient nitrogen

Table 4. ANOVA for four VIs separately on 207 DAS, 225 DAS and 233 DAS

importantly for the PhRI, the change directions of diseased samples were opposite to those
of nutrient stressed samples throughout the entire analysis.

In summary, all four VIs showed a significant sensitivity to yellow rust disease on 207 DAS,
225 DAS and 233 DAS. However, most of them also appeared to be sensitive to water
associated stresses to a varing extent, except for PhRI, which was only sensitive to disease
yet insensitive to any forms of nutrient stresses on 225 DAS and 233 DAS. More importantly,
the change directions of PhRI to disease treatments were always opposite to those to the
nutrient stress treatments at all relevant growth stages. This further confirmed the
discriminating characteristic of PhRI.



Crop Disease and Pest Monitoring by Remote Sensing 45

2.1.3 Conclusion

Combining with a dataset of yellow rust disease inoculation and a dataset of various forms
of nutrient stress treatments, we examined the responses of 38 commonly used spectral
features at five important growth stages from booting stage to milk development stage
using a one-way analysis of variance (ANOVA). There were 37 spectral features sensitive to
water associated stresses, 35 spectral features sensitive to yellow rust disease and only 15
spectral features sensitive to sole nitrogen stresses in at least one growth stage. It was
observed that more spectral features appeared to have a response to yellow rust disease at
later growth stages. A throughout ANOVA was conducted particularly on PRI, PhRI, NPCI
and ARI, which showed a consistent response to yellow rust disease at 4 out of 5 growth
stages. However, PRI, NPCI and ARI were also responsible for water associated stresses,
suggesting a risk of confusion in detecting yellow rust disease. Only PhRI was sensitive to
yellow rust disease, but insensitive to different forms of nutrient stresses. The discriminative
response of PhRI could provide a means of identifying and detecting yellow rust disease
under complicated farmland circumstances. This finding can serve the basis of remote
sensing system for detecting yellow rust disease.

2.2 Detecting yellow rust using field and airborne hyperspectral data

The aim of this study was to evaluate the accuracy of the spectro-optical, photochemical
reflectance index (PRI) for quantifying the disease index (DI) of yellow rust in wheat using
in-situ spectral reflectance measurements, and its applicability in the detection of the disease
using hyperspectral imagery.

2.2.1 Materials and methods

2.2.1.1 Experimental design and field conditions

Experimental design and field conditions was same as 1.1.1. Experimental data from 2002
Exp were used to establish the statistical models, and the data for 2003 Exp were used to
validate the models developed.

2.2.1.2 Inspection of disease severity

To quantify the severity of the disease of yellow rust, the leaves of plants were grouped into
one of 9 classifications of disease incidence (x): 0,1, 10, 20, 30, 45, 60, 80 and 100% covered by
rust. 0% represented no incidence of yellow rust, and 100% was the greatest incidence. The
disease index (DI) was then calculated using (Li et al. 1989):

DI(%) = 2.(%1) 40

nx) f

where fis the total number of leaves of each degree of disease severity and # is the degree of
disease severity observed (in this work, n ranged from 0 to 8). In each plot, 20 individuals
were randomly selected for check.

2.2.1.3 Canopy spectral measurements

The method of canopy spectral measurements and data was same as the part 1.1.1.2 above.
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2.2.1.4 Airborne hyperspectral imaging

Airborne hyperspectral images of the trial field were acquired in 2003 using the Pushbroom
Hyperspectral Imager (PHI) designed by the Chinese Academy of Science (CAS) and flown
onboard a Yun-5 aircraft (Shijiazhuang Aircraft Manufacturing Company, China). The PHI
comprises a solid state, area array, and silicon CCD device of 780 x 244 elements. It has a field
of view of 21°, and is capable of acquiring images of 1 m x 1 m spatial resolution at an altitude
of 1000 m above ground. The wavelength range is 400-850 nm with a spectral resolution of 5
nm. Images of the target field were acquired in 2003 at the phenological growth stages of stem
elongation (April 18, 2003, Zadoks stage 3), anthesis (May 17, 2003, Zadoks stage 5) and milky
maturity (May 31, 2003, Zadoks stage 8). The inoculated wheat was adequately infected by
rust on April 18, obviously infected by May 17, and seriously infected by May 31.
Measurements of DI were made and in situ canopy reflectance spectra were also acquired on
the same dates. All images were geometrically and radiometrically corrected using an array of
georeferenced light and dark targets (5 m x 5 m) located at the extremes of the field site. The
aforementioned field spectrometer was used to calibrate these targets relative to BaSO4. The
location of each target, as well as field measurements of DI were recorded using a differential
global positioning system (Trimble Sunnyvale California, USA).

2.2.1.5 Photochemical reflectance index (PRI)

Because yellow rust epiphyte reduced foliar physiological activity by destroying foliar
pigments, the photochemical reflectance index (PRI) was selected as the spectrophotometric
method of estimating the disease index. PRI was calculated by the formula in Table 2.

2.2.2 Results
2.2.2.1 PRI versus DI

Fig. 4 shows a plot of the measured DI as a function of PRI for all varieties. The data points
associated with the variety Xuezao dominate in the top-left region of the scatter plot
(relatively high range of DI), while those associated with the variety 98-100 are located in the
mid region (mid-range DI) and those associated with Jing 411 dominate the lower right
region. This distribution trend is consistent with the relative susceptibility of these varieties
to rust; Xuezao is the least resistant and Jing 411 has the greatest resistance. The regression
equation of DI using PRI in 2002 Exp was obtained as following (n = 64):

DI(%)=-72122(PRI)+240  (-0.14<PRI<0.02;7* =091}

An important feature in, the associated regression equation (Fig. 4) was that the spectrally-
derived PRI explained 91% of the variance observed in the disease index. This explanation
also encompassed the three varieties of wheat as well as the four stages of crop development
for each variety. In the subsequent validation of the PRI-DI regression equation with the
2003 Exp data (Fig. 5), the coefficient of determination (R?) between the estimated and
measured values was 0.97 (n = 80).

In Fig. 5, the locations of data points associated with individual varieties wew consistent
with the levels of resistance to rust. Xuezao dominated the top right-hand region of the
scatter plot (relatively high range of DI), the variety 98-100 had points scattered all along the
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Fig. 4. Plot of measured disease index (DI) as a function of measured photochemical
reflectance index(PRI) for all varieties combined in 2002 Exp. A: Jing 411; +: Xuezao; o: 98-100
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Fig. 5. Comparison of measured DI and PRI-estimated DI for 2003 Exp; ‘A" = Jing 411, ‘+ =
Xuezao; ‘0’ = 98-100

regression line (predominantly mid-range DI), and Jing 411 was concentrated in the central
lower-left region (lower range DI).

2.2.2.2 Application of multi-temporal PHI images for DI estimation

The DI was estimated on a pixel-by-pixel basis in each of the acquired PHI images using the
regression equation. To map the degree of yellow rust infection in the trial field, the DI was
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binned into the following classes; very Serious (DI > 80%), serious (45% < DI < 80%),
moderate (10% < DI £45%), slight (1% < DI <10%) and none (0 < DI<1%) (Fig. 6).

[ ] Moderate
[ Serious

|| Very serious

April 18,2003 May 17,2003

Fig. 6. Classified DI images derived from PHI airborne images of the trial site in 2003 Exp

Fig. 7 shows the relationship between the DI calculated from the multi-temporal PHI images

and the actual measured DI from the 120 sample sites located within the field (R2=0.91).
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Fig. 7. Comparison of PHI-derived estimates of DI and actual DI values for 2002 Exp. Data
were extracted from all three imaging times, although the DI values were< 20% for the April
18 image

PHI-derived DI (%)




Crop Disease and Pest Monitoring by Remote Sensing 49

2.2.3 Conclusion

The results of this work confirm PRI is a potential candidate for monitoring of yellow rust,
and could form the basis of an on-the-go sensor and variable-rate spray applicator or remote
detection and mapping process.

2.3 Detecting yellow rust in winter wheat by spectral knowledge base

In most cases, statistical models for monitoring the disease severity of yellow rust are based
on hyperspectral information. The high cost and limited cover of airborne hyperspectral
data make it impossible to apply such data for large scale monitoring. Furthermore, the
established models of disease detection cannot be used for most satellite images because of
the wide range of wavelengths in multispectral images (Zhang et al., 2011).

To resolve this dilemma, the study presents a novel approach by constructing a spectral
knowledge base (SKB) of winter wheat diseases, which takes the airborne images as a
medium and links the disease severity with band reflectance from moderate resolution
remotely sensed data, such as environment and disaster reduction small satellite images
(HJ-CCD) accordingly. To achieve this goal, several algorithms and techniques for data
conversion and matching are adopted in the proposed system, including minimum noise
fraction (MNF) transformation and pixel purity index (PPI) function. The performance of
SKB is evaluated with both simulated data and field measured data.

2.3.1 materials and methods

Experimental design and field conditions was same as the part of 1.1.1.1
2.3.1.1 Inspection of disease severity

Please refer to the part of 1.2.1.2 above.

2.3.1.2 Airborne hyperspectral imaging

Please refer to the part of 1.2.1.4 above about airborne hyperspectral imaging and image
processing.

2.3.1.3 Acquisition of moderate resolution satellite images

In this study, the SKB is designed to fit the charge coupled device (CCD) sensor, which is on
the environment and disaster reduction small satellites (HJ-1A/B). The basic parameters of
the CCD sensor (using ‘HJ-CCD’ in the following) are given in Table.5. The four bands of

Properties of HJ-CCD

Band WaVEkEErgr: ;’1 range Spatial resolution (m) Swath (km) Revisit time (day)
Blue 0.430-0.520
Green 0.520-0.600
30 360 2
Red 0.630-0.690
Near-infrared 0.760-0.900

Table 5. Properties of the environment and disaster reduction small satellites (HJ-CCD)
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HJ-CCD covered the visible and near infrared spectral regions. The HJ-CCD sensor has
spectral and spatial characteristics that are similar to those of Landsat-5 TM, but the HJ-
1A/ B satellites have more frequent revisit capability (2 days) than the Landsat-5 satellite (16
days), which is of great importance for agricultural monitoring.

2.3.1.4 Construction of the spectral knowledge base

The SKB in this study can be interpreted as a pool of relationships between spectral
characteristics and prior knowledge. Here, prior knowledge stands for the degree of severity
of yellow rust, and the spectral characteristics are the reflectance of the initial four bands of
the HJ-CCD image. Hence, there are two major steps involved in constructing the SKB. First,
the relationship between hyperspectral information and severity is obtained with a stable
empirical reversion model. Then, through the RSR function of the HJ-CCD sensor, the
hyperspectal data can be transferred to the wide-band reflectance. In this way, a one-to-one
correspondence between the disease severity of yellow rust and reflectances from the HJ-
CCD sensor is established at the pixel level. The SKB can represent disease severity in two
ways: the DI (%) value and the class of disease severity. The following sections describe each
step for establishing the SKB, including data selection, the reversion model, simulation of
the wide-band reflectance and estimating the degree of severity. A technical flow diagram of
SKB construction is summarized in Fig. 8.
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Fig. 8. The flow chart for monitoring of DI(%) of winter wheat stripe rust, bl-b4 represented
the reflectance of the four bands of HJ-CCD images

As noted above, the SKB in this study comprised PHI pixels. The predicted accuracy
obtained by the SKB was determined primarily by the amount of prior knowledge, which
indicated the heterogeneity of disease severity. The design of the yellow rust fungus
inoculation ensured a considerable variation in disease severity within the experimental
field, from healthy plants to very diseased plants. In addition, to avoid using pixels on or
near the ridge in the field that are considered as mixed signals, we chose three rectangular
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shaped areas that were within the field and comprised 7918 ‘crop-only’ pixels for
constructing the SKB.

2.3.1.5 Reversion model

The reversion model construction was the first step of establishing the SKB. Based on the
conclusion of the part above, PRI was a suitable vegetation index for monitoring the severity
of yellow rust disease in winter wheat. Therefore, in this study, PRI was used to establish
the linkage between the disease severity and the hyperspectral data. Specifically, the yellow
rust infection would be apparent at anthesis stage, and this should be closely related with
the subsequent yield loss. Therefore, we chose the PHI image at this stage to form the SKB.
To obtain a better fitting model, we reanalyzed the PHI-PRI and corresponding DI (%) data
at the anthesis stage specifically, and obtained a linear regression model. It should be noted
that the data range of DI must be between 0 and 100%. Any predicted DI results that
were>100% or <0% were redefined as DI = 100% and DI = 0% to represent very infected
plants and healthy plants, respectively.

2.3.1.6 Simulation of the wide band reflectance

The second step of constructing the SKB is to transform the hyperspectral reflectance of PHI-
pixels to wide band reflectance of HJ-pixels. To achieve this goal, the best approach is the
inherent relative spectral response (RSR) function of the HJ-CCD sensor. By integrating the
hyperspectral reflectance of PHI-pixels on the RSR function, the band reflectance of HJ-CCD
sensor was thus obtained. Besides, although the wavelength range of the fourth band of HJ-
CCD sensor (760 nm-900 nm) was slightly exceeded the maximum wavelength of PHI
sensor (850 nm), for most ground measured spectra, the reflectance basically kept on steady
from 760 nm to 900 nm. Hence, the simulating results generated using the incomplete range
of wavelength (760nm-850nm) should approach to the true value. The integration can be
shown as follows:

beya

Ryy = I f(x)dx
b

start

where Ry is the simulated reflectance of a certain band; bgare and beng indicate the
beginning and the end wavelength of this band respectively; f(x) indicates the RSR function,
which is obtained from CRESDA.

2.3.1.7 Spectral characteristics of different degrees of disease severity

Another way to define the disease severity of an undefined pixel, apart from the DI (%)
value, is to quantify disease severity by severity classes. The criterion of severity class
provided by Huang et al. (2007) was adopted, which corresponded to the major
physiological alteration of diseased plants. The DI (%) thresholds for each severity class
were: DI<1% indicated not infected (NI), 1% <DI<10% indicated a low degree of infection
(LI), 10% <DI<45% indicated mid-range infection (MI), 45% <DI<80% indicated seriously
infected (SI) and DI (%)>80% indicated very seriously infected (VI). The MNF
transformation and PPI function, which are used for noise reduction and end-member
identification, were applied here to select the most representative pixels from the PHI
image, and to form the typical spectrum for each severity class.
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2.3.1.8 Spectral matching algorithms

The basic idea of spectral matching is to identify a set of pixels in the SKB that are the closest
to the undefined pixel in terms of spectral characteristics. Before matching, each pixel
should be standardized to eliminate systematic variation caused by aerosol conditions or
other factors as follows:

R- Rmin

nor =
Rmax - Rmin

R

where Ry, is the standardized reflectance of a certain band, R is the original reflectance, and
Rmin and Rmax are the minimum and maximum band reflectance values, respectively, of the
corresponding pixel.

Mahalanobis distances (Mah) and Spectral angle (SA) were selected as the distance
measurement criterion. Both types of distance measurements had been proved to be with
high efficiency in reflecting the spectral discrepancy (South et al., 2004; Goovaerts et al.,
2005; Becker et al., 2007). The Mah distance can be written as:

Dy (x) = \/(x —xg) D T (x—xg)" x=(xa,X2,Xa,Xa), XR=(XR1, XR2, XR3, XR4)

where x1.4 are the reflectance of the pixel under test in band1 to band4, respectively; xri-4 are
the simulated reflectance of a specific pixel in SKB. ) is the covariance matrix between x and
xr.SA can be calculated by the following formula:

4

inxRi

0= arccosfli 0e [0,1}

To determine the DI (%) or class of disease severity of an undefined pixel, we have to
calculate the Mah and spectral angle from this pixel to each pixel or class in the SKB. A
longer distance or larger angle indicates that the pixel deviated from the undefined pixel,
whereas a shorter distance or smaller angle indicates that it is similar to the undefined pixel.
By selecting the most similar pixel, the severity class of an undefined pixel can be
determined. To determine the DI (%) of a certain pixel, the weighted average method was
used. According to the distance criteria above, the five most similar pixels were selected
from the SKB. For each band of these pixels (here we used the hyperspectral bands extracted
from the PHI image), the reflectance was processed according to the following equation:

k
R; x 1
RE _i=1 di

where R is the estimated reflectance of a certain pixel through k-NN estimation; R; is the
reflectance of the iy, nearest pixel according to the ranking order of the distance; d; is the
distance between the pixel under test to the iy, nearest pixel.
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2.3.1.9 Verification

To verify the performance of SKB in identifying and monitoring the severity of yellow rust
diseases, two datasets were used: the simulated data and the field-measured data with
corresponding satellite images.

1.

Verification of SKB using simulated data

The simulated data comprised 50 randomly selected pixels in the same experimental field,
but outside the three regions selected for constructing the SKB. The hyperspectral
information of each pixel was used to create the reference DI (%) and severity class with
the empirical model and the corresponding threshold for each severity class. To test the
performance of SKB in terms of DI (%) value, we estimated the DI value with both
distance criteria described above. The samples were split into two: the pixels with a
reference DI between 1 and 100%, i.e. the ‘diseased’ pixels, and those with a reference
DI<1%, i.e. ‘healthy” pixels. For the diseased pixels, the estimated DIs were compared
with the reference DI by Pearson correlation analysis and the normalized root mean
square error (NRMSE). For the healthy pixels, we used ‘yes or no’ to determine whether
the estimated value indicated infection or not, which also provided an accuracy ratio. The
estimation of severity class was verified by overall accuracy and the kappa coefficient.
Verification of SKB using field surveyed data

The field surveyed data sets included the ground investigation of disease severity and the
corresponding HJ-CCD images. Between June 1-3, 2009, when the winter wheat was at the
anthesis stage, we conducted a survey in the southeast of GanSu Province. The climate of
the area surveyed is characterized by high humidity and rainfall, and yellow rust disease
occurs almost every year. This area has similar environmental conditions and cultivation
customs to those where we constructing the SKB in Beijing, and this makes it an
appropriate place for model verification. With the aid of the local Department of Plant
Protection, 26 plots were randomly selected and surveyed in the area (Fig. 9). To relate the
surveyed value to the pixel value of the HJ-CCD image, we defined the plot as a uniformly
planted winter wheat region with an area no less than 30 m in radius. The geographical
coordinates of each plot were measured by GPS at the centre of the plot. Disease severity
was measured as described above. We repeated the measurement in five evenly-
distributed sections in each plot, and 20 individual plants were included in each
measurement. The HJ-CCD images (ID: 122516, 122518) acquired on June 2, 2009
completely covered the surveyed area. The raw data from the HJ-CCD imagery was
calibrated based on the corresponding coefficients provided by CRESDA. The calibrated
data were atmospherically corrected with the algorithm provided by Liang et al. (2001),
which estimated the spatial distribution of atmospheric aerosols and retrieved surface
reflectance under general atmospheric and surface conditions. The images were also
geometrically corrected against historical reference images with the same geographical
coordinates. The images were rectified with a root mean square error of less than 0.5 pixels.
The spectrum of the each plot was extracted from the image according to the GPS records.
The estimated accuracy in this step followed the same process as the simulated data.

2.3.2 Results

There were 7918 pixels included in the process of constructing the SKB. The linear
regression model between DI (%) and PRI at anthesis stage could be illustrated as follows:
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Fig. 9. The field surveyed area in Gansu Province. The base image is the HJ-CCD image
acquired on June 2, 2009

DI(%) =-538.98 x PRI +2.0983 (R2=0.88)

The pairs of DI (%) and PRI were plotted in Fig.4, which showed a significant correlation (R?2
= 0.88). Based on the model, there were 85 pixels with a DI of 100% and 3991 pixels with a
DI between 1%and 100%, indicating 51.5%pixels infected to a varied degree of severity,
whereas the other 48.5% pixels (DI = 0%) were healthy plants. In the experimental field, the
variation in the degree of severity of yellow rust from totally healthy plants to very infected
plants provided the essential diversity or heterogeneity of infection, which then enabled
establishment of the SKB. The MNF transformation resulted in 9 leading eigenvectors with
eigenvalues greater than 4.0 (Fig. 10), and these were used for further analysis.

2.3.2.1 Performance of SKB for simulated data

In the simulated dataset, there were six healthy pixels and 44 diseases affected ones. When
estimating DI (%), one pixel with no infection was estimated as infected by the Mah distance
criterion, whereas with the SA criterion two were mislabeled. Fig.11 shows the scatter of the
disease affected pixels plotted in relation to reference DI and estimated DI; the average
reference DI is 36%. The reference DIs and estimated DIs were strongly and linearly
correlated for both the Mah distance (R2 = 0.90) and SA (R2 = 0.84) criteria. Further, the
NRMSE of Mah distance and SA were 0.20 and 0.24, respectively, indicating that the SKB
can estimate DIs accurately from the simulated multi-band reflectance.
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Fig. 11. Estimated DI(%) using simulated data

Table 6 gives the reference class of disease severity and the estimated class in the form of an
error matrix. The overall accuracy with Mah distance and the SA criterion were 0.80 and
0.76, respectively, whereas the kappa coefficients were 0.71 and 0.65, respectively. However,
we noticed that all the misclassified pixels were assigned to no more than one class adjacent
to the reference class. Therefore, for simulated data, the classification accuracy was
satisfactory in determining the severity class of yellow rust by SKB.

2.3.2.2 Performance of SKB for field surveyed data

Apart from the verification against simulated data, more importantly, the field surveyed
data can be also used to assess the performance of the SKB. The field investigation showed
that eight out of 26 plots were infected with DI ranged from 4 to 90%, whereas the other 18
plots were not affected by yellow rust. The estimation by DI (%) successfully identified the
eight infected plots when the Mah distance criterion was used, whereas the SA criterion
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Reference
None Low range Mid Serious V(?ry Total
range serious
None 6 0 0 0 0 6
Low range 0 5 2 0 0
. . Mid range 0 1 20 2 0 23

Estimation .

(Mah) Serious 0 0 1 10 1 12
Very 0 0 0 1 1 2
serious
Total 6 6 23 13 2 50
None 5 1 0 0 6
Low range 1 4 0 0

L Mid range 0 1 20 2 0 23

Estimation .

(SA) Serious 0 0 2 9 1 12
Very 0 0 0 2 1 3
serious
Total 6 6 23 13 2 50

Table 6. Error matrix for simulated data

resulted in one misestimated plot. Figure 7 shows the scatter of the eight data plotted in
relation to reference DI and estimated DI for both distance criteria. There was a significant
linear trend in graphs based on both the Mah distance and SA criteria. The R2 of Mah distance
and SA were 0.80 and 0.67, respectively, whereas the NRMSE were as high as 0.46 and 0.55. In
real circumstances, approximately 50% error in the estimated disease index is unsatisfactory.
On the other hand, however, most of the uninfected plots were correctly identified according
to DI (%) estimates (i.e. a DI<1%). For both the Mah distance and SA criteria, 15 out of 18 non-
infected plots had been identified correctly, resulting in an accuracy of 77.8%. The results for
estimating disease severity by severity class were even more encouraging. The overall
accuracy for the Mah distance and SA criteria were 0.77 and 0.73, respectively, whereas the
kappa coefficients are 0.58 and 0.49, respectively. Table 3 gives the error matrix for both
criteria. The misclassified pixels were also assigned exclusively to the adjacent class.

In general, the above results demonstrate that the proposed SKB scheme has great potential for
detecting the incidence and severity of yellow rust through multispectral images. As shown
from several previous studies, the image processing method of MNF transformation was
efficient in extracting the principle information from the images related to wheat disease
infection (Zhang et al. 2003; Franke and Menz 2007). For the present study, we found that
coupling MNF transformation with the PPI function was an appropriate way of extracting the
principle information on yellow rust disease. To estimate disease severity by DI (%), the
proposed SKB has achieved a satisfactory accuracy for simulated data. However, the estimated
accuracy for field surveyed data was unsatisfactory, implying that the method tends to
underestimate or overestimate the disease severity in practice. Nevertheless, to estimate disease
severity through disease severity class has achieved a satisfactory accuracy for both simulated
data and field surveyed data. Therefore, the disease severity class seems to be more robust in
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determining the disease severity. This might be because it is more rough estimation than DI (%).
It is understandable that for the same sample, the less precise the criterion, the greater accuracy
it would achieve. Moreover, the 5-class disease severity quantification is enough to guide field
applications. We suggest that DI (%) should be used for detecting the disease severity of yellow
rust by SKB. For the distance criteria used in the process of matching with SKB, the Mah
distance criterion might be more appropriate because it performed better than SA in all the
analyses conducted in this study (Figs. 11, 12, Tables 6, 7). Some previous studies have already
emphasized the potential of hyperspectral imagery (Bravo et al. 2003; Moshou et al. 2004;
Huang et al. 2007) and the high-resolution of multispectral imagery (Franke and Menz 2007) for
detecting yellow rust disease. The development of SKB in the present study can be viewed as a
scaling up method, which has extended the capability of detecting yellow rust disease from
hyper- spectral imagery to the moderate resolution of multispectral imagery. However, it
should be noted that the task of monitoring the occurrence and degrees of infection of crop
diseases is far more complex than the cases described in this study. The spectral characteristics
of yellow rust infection might appear similar to other sources of stress. In addition, the impact
of phenology, cultivation methods, fragmentation of farmlands and other environmental
conditions would also increase the difficulty and uncertainty of the estimation process.
Therefore, the SKB developed in this study should correspond to the situation at the anthesis
stage exclusively, and is only suitable for those regions with similar environmental
characteristics and cultivation methods. For other regions with significantly different
environmental characteristics, this purposed SKB may not work well. The possible solution to
these problems may include incorporating suitable priors, which would require integration
strategies and understanding of the mechanisms underlying some fundamental processes.
Further research is required to address the problems mentioned above.
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Fig. 12. Estimated DI(%) using field measurements

2.3.3 Conclusion

The low spatial resolution and few spectral bands have limited the application of moderate
resolution satellite images for monitoring yellow rust disease. The spectral knowledge base
developed enabled disease incidence and severity to be detected by moderate resolution
satellite images. The SKB supported two ways of estimating disease severity: the disease
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Reference

None Low range Midrange Serious Very serious Total

None 16 0 0 0 0 16
Low range 2 2 1 0 0 5
Estimation Mid range 0 1 3 0 0
(Mah) Serious 0 0 0 0 1
Very serious 0 0 0 0 0
Total 18 3 4 0 1 26
None 15 0 0 0 0 15
Low range 3 2 1 0 0 6
Estimation Mid range 1 3 0 0 4
(SA) Serious 0 0 0 0 1 1
Very serious 0 0 0 0 0 0
Total 18 3 4 0 1 2

Table 7. Error matrix for ground measured data

index and disease severity class. Both methods of estimation achieved a satisfactory level of
accuracy for simulated data. For field surveyed data, estimation by DI (%) resulted in an
unsatisfactory level of accuracy, whereas it was satisfactory for severity class. The Mah
criterion performed better than spectral angle in all analyses. Therefore, the former should
be considered as the more appropriate distance criterion.

Generally, the purposed SKB has a great potential in extending the capability of detecting
yellow rust to multispectral remote sensing data, especially when the region of interest has
similar environmental conditions to where the SKB was developed. The uncertainties
caused by environmental differences should be further investigated in future studies.

2.4 Detecting yellow rust of winter wheat using land surface temperature (LST)

The air temperature and humidity are the most direct and important indicators of
occurrence of yellow rust fungal. Generally, weather stations can provide the dynamic
pattern of meteorological data for site sampled, yet not able to include the information of
spatial heterogeneity. Fortunately, remote sensing technology has great potential for
providing spatially continuous observations of some variables over large areas (Luo et al.,
2010). The aim of the study was to study preliminarily on the relationship between the
occurrence of wheat yellow rust and land surface temperature (LST) derived from
moderate-resolution imaging spectroradiometer (MODIS) in order to predict and monitor
incidence of the yellow rust on large scale.

2.4.1 Materials and methods
2.4.1.1 Survey area and field investigations acquisition

Field experiments of winter wheat were conducted during the growing seasons (form April
to June) of winter wheat in 2008 and 2009. The investigation locations included Longnan
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district, Tianshui district, Dingxi district and Pingliang district in GanSu province and
Qingyang district in ShanXi province as well as Linxia district in Ningxia Hui Autonomous
Region (Fig.1), where the climates are semiarid and subhumid. Survey areas are located
between latitude 32°40’'N to 35°39'N and longitude 103°10°E to 107?40’E, and the mean
altitude is over 2000 meter. The climate condition of surveyed area is characterized by high
humidity and rainfall, and yellow rust disease almost occurs every year. It is reported that
Longnan district is an important overwintering and oversummering area of yellow rust
fungal (Zeng, 2003).

With the aid of the local Department of Plant Protection, 151 plots, including 68 plots from
April to June in 2008, and 83 plots from April to June in 2009, were randomly selected and
surveyed in the areas. The geographical coordinates of each plot were measured by GPS
navigator at the middlemost of the plot. In addition, the disease severity was inspected.

2.4.1.2 MODIS land surface temperature (LST) products (MOD11)
Product description

MODIS Land Surface Temperature and Emissivity (LST/E) products (named starting with
MOD11) provide per-pixel temperature and emissivity values. Temperatures are extracted
in Kelvin with a view-angle dependent algorithm applied to direct observations. This
method yields the error less than 1 K for materials with known emissivity. The view angle
information is included in each LST/E product.

MOD11 acquisition and processing

24 MOD11A2 images (MODIS/Terra land surface temperature/emissivity 8-day L3 global
1km SIN grid v005) were acquired for free from Web (http://edc.usgs.gov/#/Find_Data)
from April to July in 2008 and 2009, which covered completely the survey area, and 4 scenes
images were acquired in every month. The raw data of MOD11A2 imagery were processed
and transformed by MRT tool, and LST products were extracted from MODII A2 images.
Then the survey area was cut by ENVI from LST images. Followed by that step, 4 scenes 8-
day LST images of every month were all averaged, and 6 average LST images, including
April, May, June in 2008 and 2009, were obtained. Finally, LST of 151 investigation points
were respectively extracted from 6 average LST images.

2.4.2 Result
2.4.2.1 Determining LST threshold of infected points

The spatial resolution of MODIS temperature products is 1 km, while the DI of every
investigation point only stands for the incidence of 30 m in semi diameter plots. Therefore,
the scale of MODIS temperature products seemed not satisfied the investigation points for
proper relationship between them. However, spatial variability of LST is slim, and the law
still exists. A series of results could be found by establishing a two-dimensional spatial
coordinate based on DI and LST, in which all investigation points were displayed (Fig 13).
Firstly, the DI ranged from 0% to 100%, and most of infected points ranged from 0% to 60%.
The LST values were between 292K and 310K with most of infected points distributed in the
range from 298K to 306K. In addition, the points in the region of less than 298K were not
infected by yellow rust basically; DI were less than 1% expect for one point (296.29K, 16%),
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which was thought as abnormal point. In addition, the LST values of all investigation points

were less than 306K expect for one point (310.09K, 24%), which was abnormal because its
LST was far away from LST values of others.
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Fig. 13. The distribution of the investigation points

Therefore, without considering other factors, It is concluded that yellow rust can occur
when LST is in the region from 298K to 306K.

2.4.2.2 Yellow rust incidence analysis based on LST

According to the results illustrated above, the advanced analysis was performed for
incidence and possible area of yellow rust. The points in different LST range were done
statistical analysis with all points’ numbers and the infected points” number, and finally, the
incidences were obtained by the number of the infected points dividing the number of all
points in the different LST range (Table.8). The result showed that all investigation points in
the region of less than 298K were not infected by yellow rust, except for the abnormal point
(296.29K, 16%). On the other hand, in the LST region of more than 306K, there was only one
point, which was viewed as abnormal point (310.085K, 24%). Thereby, it is quite possible

that yellow rust fungus can not survive in the region of more than 306K. The conclusion was
consistent with the above result (Fig. 13).

LST (K LST>2 LST>2 LST= LST= LST> LST= LST= LST= LST= LST> LST=
) 96 97 298 299 300 301 302 303 304 305 306

Total 126 112 99 79 61 34 25 16 12 8 1
number
Number of
infected 49 48 47 D) 39 27 25 16 12 8 1
points

Incidence (%) 38.89 4286 4747 5316 6393 7941 100 100 100 100 100

Table 8. Statistic analysis in different LST range
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Furthermore, there was an increasing trend of incidences with the rising of LST in the region
from 296K to 302K. The incidence of yellow rust reached up to 100% when the LST was
graeter than 302K (Fig. 14).
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Fig. 14. The incidence of yellow rust in different LST range

2.4.2.3 Dividing yellow rust suitable occurrence region based on LST

According to Table 8 and Fig. 14, the survey areas could be divided into yellow rust
unsuitable area (NSA), of which LST ranged from 298K to 306K, and yellow rust suitable
area (SA), of which the LST was less than 298K and more than 306K. Moreover, the SA was
divided into 3 levels according to the infected of yellow rust incidence and LST, and the LST
thresholds for each level were: 298K < LST < 299K the low suitable area (LSA), on which the
yellow rust occurs with very low possibility (incidence < 60%), 299K < LST < 301K the
medium suitable area (MSA), which had moderate possibility for the occurrence of yellow
rust (60% <incidence <100%), and 302K < LST < 306K high suitable area (HSA), of which the
environment was highly favorable to yellow rust (incidence=100%).

2.4.2.4 Verification

Total 26 points (from May 2008) were applied for the verification the method of estimating the
incidence of yellow rust. It should be noted that those points were not used for the defining of
the LST thresholds. (Fig. 15). These 26 points were constituted by 18 infected points and 8 non-
infected points. Results showed the infected points were all in different suitable areas of wheat
yellow rust, while the non-infected points were all in the unsuitable area. Thus the infected
situation of yellow rust of these 26 points was consistent with forecast results. Geographically,
it seemed that the yellow rust was prone to be prevalent in the northeast of Pingliang,
southwest of Qingyang, northeast of Dingxi, the center part of Tianshui, and the west of
Longnan, because they all were located in MSA and HAS. This result was consistent with the
previous study (Xiao, et al, 2007). To prevent yellow rust from prevalence, more efforts should
be placed on the farmlands located in the MSA, HAS and LSA.

2.4.3 Conclusions

Plant disease is governed by a number of factors, and the habitat factors play a major role in
the development and propagation of fungal pathogens (Sutton et al., 1984; Héléne et al.,
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Fig. 15. Forecast map of yellow rust and distribution of measured points in May, 2008 based
on LST

2002; Cooke et al., 2006). The yellow rust is no exception. The weather station can only offer
points data, and remote sensing, however, can be a promising means for acquiring spatially
continuous observations over large area. It has not been reported, if any, that the LST
derived from remote sensing data is used to forecast the development of yellow rust.

The study tried to present a method that could forecast the suitable areas of wheat yellow
rust by MODIS temperature products in a large scale. And it was proved that LST derived
from remote sensing data had potential for predicting the occurrence and development of
wheat yellow rust in a large area. From our results, it is clear that preventive measures of
yellow rust can been made over large scale area accordingly with different real-time
prediction methods based on LST derived from remote sensing data.

3. Detecting and discriminating winter wheat aphid by remote sensing

Wheat aphid, Sitobion avenae (Fabricius), is one of the most destructive pests in agricultural
systems, especially in temperate climates of the northern and southern hemispheres. Wheat
aphid appears annually in the wheat planting area of China, causing great economic
damage to plant crops as a result of their direct feeding activities. In high enough densities,
wheat aphids can remove plant nutrients, and potentially reduce the number of heads, the
number of grains per head, and overall seed weight. The damage is especially high when
wheat aphid occurs in the flowering and filling stage of wheat. It is reported that average
densities over 20 aphids per plant can cause substantial losses of yield and quality of wheat
(Basky & Fonagy, 2003). There are also indirect damages including excretion of honeydew
from aphids and as a vector of viruses, most notably two strains of the Luteovirus Barley
Yellow Dwarf Virus (BYDV-MAV and BYDV-PAV) (Susan et al, 1992). To prevent the
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occurrence and prevalence of aphid, large amounts of insecticides are used, causing
environment pollution. Therefore, large-scale, real-time prediction and monitoring of wheat
aphid incidence and damage degree using remote sensing technology are extremely
important.

3.1 Detecting winter wheat aphid using hyperspectral data

The study aimed to identify spectral characteristics of wheat leaf and canopy infected by
aphid and find the sensitive bands to aphid at canopy level in filling stage of wheat, and to
establish an aphid damage hyperspectral index (ADHI) based on those sensitive bands for
detecting aphid damage levels in wheat canopy level in filling stage of wheat.

3.1.1 Materials and methods
3.1.1.1 Field experiments and field inventory

The field experiment plot was located at Xiaotangshan Precision Agriculture Experiment
Base, Changping distract, Beijing (40°10.6'N, 116°26.3'E). The experimental field was about
250 m in length and 80 m in width. The winter wheat was planted in the study area from
Oct 3, 2009, and harvested from June 25, 2010. Field inventory was conducted on June 7,
2010 when wheat was in the filling stage. Twenty five ground investigations including
different aphid damage levels were selected. Aphid damage level was surveyed according
to the investigation rule.

3.1.1.2 Canopy spectral measurements

Please refer to 1.1.1.2 part above.

3.1.2 Results
3.1.2.1 Leaf spectral characteristics of wheat infested by aphid

Representative reflectance measured from wheat aphid-infested and uninfested wheat
leaves are shown in Fig. 16. It was evident that the spectral response of the wheat leaf was
significantly affected by wheat aphid feeding (Fig. 16). The reflectance of wheat leaf infested
by aphid was higher in the visible spectrum and short-wave infrared region and lower in
near-infrared region than that of uninfested leaf. A significant increase in the reflectance
from the wheat aphid-infested leaf in the visible region (400-700 nm) was observed,
evidently due to reduction of photosynthetic pigment concentrations in particular
chlorophylls caused by wheat aphid feeding (Richardson et al., 2004).

3.1.2.2 Canopy spectral characteristics of wheat infested by aphid

Compared with the canopy spectra of the healthy wheat, the canopy reflectance of aphid-
infested wheat was gradually decreased in the range from 350 nm to 1750 nm, especially in the
near infrared region (Fig. 17). Previous researches indicated that wheat had higher reflectance
at visible wavelengths than the healthy vigorously growing wheat because the photoactive
pigments (chlorophylls, anthocyanins, carotenoids) were destroyed. In this study, aphid
occurred in the filling stage of wheat and the honeydew excreted by aphid absorbed dust or
others from surrounding environment and contaminated (darkened) the leaf surface. As a
result, the absorption at light slight wavelengths became stronger instead of weaker.
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Fig. 16. The spectral reflectance of winter wheat leaf uninfested and infested by aphid
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Fig. 17. The spectral reflectance of healthy wheat and wheat infested by various aphid
damage levels. (Healthy: the average spectra of healthy wheat samples; Slight: the average
spectra of aphid damage level 1land 2; Moderate: he average spectra of aphid damage level
3and 4; Severe: the average spectra of aphid damage level 5 and 6).

3.1.2.3 Aphid damage hyperspectral index for detecting aphid damage degree

Sensitive band selection of aphid infestation based on canopy reflectance

The sensitive bands were selected out by relevance analysis between reflectance and aphid
damage levels. The reflectance ranges were from 400 nm to 690 nm, from 700 to 1300 nm
and from 1500 to 1800 nm. The most sensitive bands to aphid were 551 nm (R2=0.741) in
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visible light, 823 nm (R2=0.865) in near infrared (NIR) and 1654 nm in short-wave infrared
(SWIR) (R2=0.668), respectively (Fig. 18).
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Fig. 18. Correlation coefficient between reflectance and aphid damage levels

Aphid damage hyperspectral index (ADHI) was established based on the most sensitive
bands from hyperspectral data in the visible light region, NIR and SWIR and weight
coefficient calculated according to rate of change of reflectance between healthy wheat and
aphid-infected wheat, respectively.

ADHI — 032 x R551normal _R551infested +051 « R823normul - R823infested
R551normal R823normal
1017 x R1654, 5rima1 - R1654infested
R1654normal

where R55110rmal * R823normal and R1654,ormar are reflectance in 551 nm, 823 nm and 1654 nm
of healthy wheat; R551infested , R823 infested , R1654 infested are reflectance in 551 nm, 823 nm and
1654 nm of aphid-infected wheat; 0.32, 0.51 and 0.17 are weight coefficients calculated by the
contribution to change rates.

Further more, the correlation analysis was conducted between ADHI and aphid damage
level from 25 investigation points (Fig. 19). It was concluded that ADHI exhibited high
relationship with aphid damage levels (R2=0.839). Therefore, ADHI was an important index
to estimate aphid damage level in winter wheat.

3.1.3 Conclusions

Hyperspectral remote sensing has gone through rapid development over the past two
decades and there is a trend toward the use of hyperspectral image in the application of
remote sensing for precision farming. The study analyzed the spectral characteristics of
wheat infested by aphid and selected the sensitive bands to aphid damage level. Then, an
ADHI was developed using the most sensitive bands in visible light region, NIR and SWIR.
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Fig. 19. The correlation between ADHI and aphid damage level

It was concluded that ADHI was a sensitive index to aphid damage levels, and could be
used to retrieve aphid damage levels in the filling stage of wheat.

Crop growth is very dynamic processes and monitoring the condition of agricultural corps
is a complex issue. It is possible that wheat damage symptoms caused by aphids and its
response of canopy reflectance are different in different wheat growth stages. This study
revealed that the reflectance of wheat infested by aphid was lower than healthy wheat in
filling stage probably because of honeydew excreted by aphid. This was not consistent with
previously published results in early detection of aphid infestation. Therefore, whether the
ADHI can effectively retrieve aphid damage levels in other wheat growth stages remains as
a task of future studies.

3.2 Detecting winter wheat aphid incidence using Landsat 5 TM

Wheat aphid occurrence and damage degrees are related to many factors including
temperature, humidity, precipitation, field management, enemies, etc.. Most of the present
studies on aphid prediction have been conducted based on meteorological data acquired
from weather stations, and aphid density was monitored using the spectral characteristics of
wheat infested by aphid. However, it is rare to investigate the relationship between
environmental parameters, vegetable information derived from satellite images and aphid
damage degrees. The aim of the present study is to investigate the relationships of aphid
occurrence and damage degree to LST, NDWI, and MNDWI, which are related to vegetation
water content derived from multi-temporal Landsat 5 TM. Another goal of the current
research is to distinguish the degrees of aphid damage using 2-dimension feature spaces
established by LST-NDWI and LST-MNDWI.

3.2.1 Materials and methods
3.2.1.1 Study areas

The study areas are selected in Shunyi district (116°28'—116°58' E » 40°00' —40°18' N) and
Tongzhou district (116° 32'—116°56' E, 39°36' —40°02' N,) of Beijing, China (Fig.20-a). The
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study areas have flat topography, with elevation ranging from 20 m to 40 m. The study areas
have semi-humid warm temperate climate with yearly precipitation of 625 mm and mean
temperature of 11.5°C in the Shunyi district and yearly precipitation 620 mm and mean
temperature of 11.3°C in the Tongzhou district. Both districts are considered main winter
wheat planting areas in Beijing, and aphid infestations occur in both areas almost every
year.
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3.2.1.2 Field inventory and data pre-processing

Field inventory was conducted during the growing seasons of winter wheat in 2010. The
winter wheat in the study areas were planted between September 25 and October 7, 2009,
and harvested between June 19 and June 25, 2010. Based on the combination of
representative sampling and random sampling scheme, 70 sample plots with size of 0.09 ha
(30 m x 30 m) each were collected as in Fig 1-a. These sample plots had different site
conditions, plant densities, and management conditions. Aphid density surveys were
carried out respectively on May 4 and May 6 for jointing stage, May 20 and May 21 for the
heading stage, and June 3 and June 4 for the filling stage. The geographical coordinates of
each plot were measured by global positioning system (GPS) ( GeoExplorer 3000 GPS, with
the error within 1m) at the middlemost of the plot.

Each sample covered with an area of 1 m2 Then, 10 tillers in each sample plot were
randomly selected, and the number of aphids was counted. The aphid densities were then
estimated as follows: total aphids /10 tillers.

The survey results were divided into three aphid damage degrees according to the aphid
density investigated for facilitating the study. They were SO: non-infested by aphid and no
damage to wheat, S1: aphid abundance/per tiller was about 3-10 and damage degree to
wheat was slight, and S3: aphid abundance/ per tiller was more than 20 and damage degree
to wheat was severe.

3.2.1.3 Satellite image acquisition and pre-processing

Three Landsat-5 Thematic Mapper (TM) images (path 123/row 32) and three MOD 02 1
KM-Level 1B Calibrated Radiances Production (MOD 02) were acquired on May 4, May 20
and June 5, 2010, respectively. And all images were more than 90% cloud-free.

The Landsat-5 TM images were spectrally corrected to reflectance using the Landsat TM
calibration tool and FLAASH (Fast line-of-sight Atmospherics Analysis of Spectral
Hypercubes) was used to correct the image for atmospheric effects in ENVI 4.5. The
Landsat-5 TM images were geometrically corrected versus a reference IKONOS image
(equivalent scale map 1:10000) of the same area, available from a previous study. The
resulting root mean square error (RMSE) did not exceed 0.3 pixels, which was adequate for
the purposes of the present study.

3.2.1.4 Derivation of LST, NDWI and MNDWI from Landsat 5 TM

NDWI and MNDWI are both sensitive to changes in liquid water content of vegetation
canopies (Hunt and Rock, 1989). In the current research, both NDWI and MNDWI were
used to determine the threshold of aphid occurrence and the aphid damage degree. The
indices are of the general form, as shown in the following:

NDWI = Rk = Rswir -y enyay = Roreen -Rswir
Ryir *Rswir Rereen tRspir

where Rereen Rair and Rswr are the reflectance in the green band, near-infrared band and

short wave infrared band, respectively. For Landsat TM/ETM+, Roreen Rnir and Rswir
correspond to band2, band4 and band5, respectively.
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LST is the radioactive skin temperature of the land surface, which plays an important role in
farm and ecological environment. The present paper aims to discuss the relationship
between LST and aphid occurrence and spread. LST was derived from the thermal infrared
band (10.4-12.5pm) data of Landsat-5 TM using generalized single-channel algorithm
developed by Jiménez-Mufioz and Sobrino (Jiménez-Mufioz and Sobrino, 2004). Surface
emissivity (¢) and atmospheric water vapor content (w) were important parameters in the
generalized single-channel algorithm. In the study, w was derived from the reflectance of
band2 and band19 of MOD02, (Kaufman and Gao, 1992), and & was calculated by vegetation
coverage (Carlson and Ripley, 1997).

The NDWI, MNDWTI and LST of all sample points were calculated and extracted from the
Landsat images.

3.2.1.5 Subset image selection and wheat extraction

We resized the subset areas with size of 7.2 km?2 (3 km x 2.4 km) from the study area image
located in Tongzhou district and covered with 20 evenly distributed sample points, and the
aphid densities of the sample points were surveyed on May 6, May 20 and June 4, 2010,
respectively. The survey results showed that the aphid damage degree of all sample points
were S0 on May 6, 18 points for S1 and 2 points for SO on May 20, and 16 points for S2 and 4
points for SO on June 4, respectively. The subset areas were small enough and 20 sample
points evenly distributed, According to the survey result, the aphid damage degree of the
sample plots was basically same. Thus, the change of the aphid damage degree of wheat
pixels in the wheat plots was slim or even basically the same as the sample plots. The wheat
area of subset image selection area was extracted using classification of decision tree in
ENVI 4.5 (Fig 20-b). The LST, NDWI and MNDWTI of 2000 wheat pixels were extracted.

3.2.1.6 Methods of accuracy assessment

One basic accuracy assessment currently being used is overall accuracy, which is calculated by
dividing the correctly classified pixels by the total number of the pixels checked. The Kappa
coefficient is a measure of the overall agreement of a matrix introduced to the remote sensing
community in early 1983. It has since become a widely used measure for classification
accuracy. In contrast to overall accuracy, the Kappa coefficient takes non-diagonal elements
into account (Rosenfield and Fitzpatrick-Lins, 1986), and it is calculated by the formula:

I )y
NY X, - > X;+ X,
K=—i=1 i=1

I
N>->' X +X,
i=1

where r is the number of rows and columns in the error matrix; N is the total number of
observations; Xii is the observation in row i and column i; Xi+ is the marginal total of row I;
X+i is the marginal total of column i.

3.2.2 Results

3.2.2.1 2-dimensional feature space based on LST-VI

The minimum value, maximum value, mean values and standard deviations of LST, NDWI
and MNDWTI with aphid damage degrees of wheat pixels in subset image selection were
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listed in Table 9 and Table 10. And 2-dimensional feature space coordinates were
established with LST as the abscissa and NDWI and MNDWI as the vertical axis,
respectively (Figs. 2, 3). LST ranged from 287.5879 to 313.3448, NDWI ranged from 0.0226 to
0.5591 and MNDWTI ranged from -0.3402 to -0.1077, respectively.

It is clear that LST was increasing from SO to S1 to S2. LST was an important driving factor
for aphid occurrence and could distinguish wheat non-infected from infested by aphids (Fig.
21 and Table 9). The general trend of NDWI increased firstly and reduced afterward,
whereas MNDWI reduced firstly and increased afterward from SO to S1 to S2.

Aphid LST NDWI MNDWI
Damage Minimum Maximum Minimum Maximum Minimum  Maximum
Degree value value value value value value
S0 287.5879 296.2498 0.0226 0.4405 -0.3402 -0.1077
S1 297.8084 306.0133 0.2083 0.5591 -0.6506 -0.3326
S2 300.5391 313.3448 0.0473 0.4542 -0.4117 -0.1159

Table 9. Minimum and maximum values of LST, NDWI and MNDWTI in S0, S1 and S2

Aphid LST NDWI MNDWI

Damage Mean value Standard Mean Standard Mean value Standard
Degree deviation value deviation deviation
S0 290.8578  1.4740 0.3029 0.0574 -0.2293 0.0296

S1 299.9236 1.0834 0.3998 0.0587 -0.4940 0.0362

S2 303.9424  1.7121 0.2979 0.0458 -0.2672 0.0402

Table 10. Mean value and standard derivation of LST, NDWI and MNDWI in S0, S1 and S2
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3.2.2.2 Discriminating aphid damage degrees using LST and MNDWI

In the 2-dimensional feature space coordinate system that was composed by LST and
MNDWI, the SO samples mainly scattered on the left part of the coordinate system, whereas
S1 and S2 samples were distributed on the right part. As shown in Fig. 22, when LST was
lower than the certain value, aphid did not occur, suggesting that LST served as a key factor
of aphid occurrence and the MNDWI was sensitive to aphid damage degree.

Furthermore, LSTy and MNDWIy, which were the cutoff value of threshold values of LST
and MNDWI of SO, S1 and S2, were determined by mean values and standard deviations.
LST0 and MNDWIO were calculated by formula as follows:

LSTo =LST_M1—2xLST_SD1

MNDWIp= (M_M1+3xM_SD1)+ [(M_M1+ 3xM_SD1)-(M_M2-3xM_SD2)]/2

where LST_M1 and LST_SD1 are the mean value and standard deviation of LST for S1;
M_M1land M_SD1 are the mean value and standard deviation of MNDWI for S1; and M_M?2
and M_SD?2 are the mean value and standard deviation of MNDWI for S2.

According to Table 3, LSTy = 297.7568 and MNDWI, = -0.3866. Wheat was not infested by
aphid when LST< 297.7568, and aphid damage degree was S1 when LST>297.7568K and -
0.6506<MDNWI <-0.3866 and S2 when LST>297.7568K and -0.3866 <MDNWI <-0.1077 (Fig.
22).
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Fig. 22. Discriminating aphid damage degrees using LST and MNDWI

3.2.2.3 Verification

All survey samples, except 20 samples in the subset selection image were used to test the
aphid prediction accuracy of 2-dimensional feature space based on LST and MNDWI (Fig.
23).

The discrimination accuracy was assessed using overall accuracy and kappa coefficient
(Table 11). The results showed that the overall accuracy was 84%, and the Kappa accuracy
was 75.67%.
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Fig. 23. Distribution of test sample plots in LST-MNDWI feature space

SO S1 S2 Total
S0 17 0 0 17
S1 2 14 0 16
S2 4 2 11 19
Total 23 16 11 50

Kappa coefficient = 0.7567

Table 11. Error matrices of the verification samples

3.2.3 Conclusions

This study successfully investigated the relationship between aphid damage degrees and
several spectral features, such as NDWI, MNDWI and LST, through 2-dimensional feature
space method. The results indicated that LST was the key factor in predicting the occurrence
of aphid, and MNDWTI was more sensitive to aphid damage degree than NDWI. In the 2-
dimension feather space composed by LST and MNDWI, the result showed that S0, S1 and
S2 were divided into three regions; SO was distributed on the left of the space, and S1 and S2
on the right. Further, LST0O and MNDWIO were calculated according the mean and
derivation of S1, S2 as the cutoff value of threshold value to discriminate SO, S1 and S0.
Through the verification of discrimination threshold value, it confirmed that the overall
accuracy of discrimination was 84% and Kappa coefficient was 0.7567, suggesting that LST
and MNDWI were of great potential in discriminating and monitoring the aphid damage
degree over a large area, only using thermal infrared band and multi-spectral satellite
images.
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1. Introduction

The Brazilian savanna, named locally Cerrado, is the second largest Brazilian biome, covering
approximately two million km?2, especially in the Central Highlands (Ratter et al., 1997). This
biome is composed predominantly of tropical savanna vegetation and is considered as one of
the world's biodiversity hotspots, a priority area for biodiversity conservation in the world
(Myers et al., 2000). The Cerrado region is considered the last agricultural frontier in the world
(Borlaug, 2002), which has been converted in the last 50 years especially for agriculture and
pasture purposes, where natural and mainly anthropogenic annual burning is a common
practice. Currently, around 50% of natural vegetation in the Cerrado region has been converted
to pastures and crops (PROBIO-MMA, 2007).This conversion has impacted the biological
diversity, the hydrological cycle, the energy balance, the climate and the carbon dynamics at
local and regional scales due to habitat fragmentation, invasive alien species, soil erosion,
pollution of aquifers, degradation of ecosystems and changes in fire regimes (Klink & Machado,
2005; Aquino & Miranda, 2008). The knowledge of spatial distribution, temporal dynamics and
biophysical characteristics of the vegetation types, are important elements to improve the
understanding of what is the interaction like between vegetation, precipitation and fire.

The objective of this study is to determine the relationship of environmental variables, such
as precipitation and fire, with spatial and temporal distribution patterns of main vegetation
type of the Brazilian tropical savanna. Thus, we seek to answer the question: how
environmental variables, like rain and fire, influence the main vegetation types, like
herbaceous, shrubs, deciduous trees and evergreen trees, in the Cerrado biome taking in
account the seasonal patterns of the variables involved?

In this study, the potential of multi-temporal satellite data, like TRMM data for
precipitation, MODIS vegetation indices products for land cover mapping, and others
sensors like GOES and MODIS for fire detection is explored by the use of remote sensing
and geographic information systems (GIS) techniques.

1.1 Seasonality of Cerrado vegetation

Phenological parameters of vegetation, such as start and end of the growing season, are
strongly influenced by atmospheric conditions (like precipitation, temperature and humidity)
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at different time scales (intrannual, inter-annual, interdecadal, and so on). Atmospheric
conditions at intrannual scale influence the main phenological events that the plant
experiences during the annual cycle of growth (Reed et al. 1994). At greater time scales, climate
influence on the spatial and temporal distribution of vegetation (Schwartz, 1994). On the other
hand, the vegetation influence atmosphere while maintaining or modifying the flows of matter
and energy, albedo, roughness, CO,, which in turn affect the regional and/or global climate.

Savanna ecosystems that cover approximately 20% of the global land surface have
mechanisms that control the flow of matter and energy in tropical savannas. These
ecosystems are not well understood, which has hindered the inclusion of this biome in
studies of regional and global modeling (Law et al., 2006).

1.2 Climate and precipitation regime

Climate patterns from intra-seasonal to decadal and century scales directly influence the
timing, magnitude (productivity), and spatial patterns of vegetation growth cycles, or
phenology (Reed et al., 1994; Schwartz, 1994).

The Savanna biome has a wet/dry climate. Its Kppen climate group is Aw. The A stands
for a tropical climate, and the w for a dry season in the winter and the rainy season in the
summer. During the dry season of a savanna, most of the plants shrivel up and die. Some
rivers and streams dry up (Parker, 2000; Ritter, 2006). In the wet season all of the plants are
lush and the rivers flow freely. The temperature of the savanna climate ranges from 20° to
30° C. In the winter, it is usually about 20° to 25° C. In summer the temperature ranges from
25° to 30° C. The savanna temperature does not change a lot, although when it does, it is
very gradual and not drastic.

Because of its latitudinal position, the Brazilian savanna region is characterized by the transition
between the warm climates of low latitudes and mesothermal climates of middle latitudes
(Nimer, 1989). This region is considered almost homogeneous on the length and location of the
dry and rainy periods (Rao & Hada, 1990). However, Castro et al. (1994) show that this region
has a certain degree of heterogeneity due to the variation of length in the dry and rainy periods.
This heterogeneity is determined by the interaction of atmospheric circulation systems in the
lower and upper troposphere over the region. Some of these systems are: The South Atlantic
anticyclone also known as South Atlantic Convergence Zone (SACZ), Polar anticyclone and
Chaco low. SACZ is one of the main phenomena that determine the rainfall across the region
(Satyamurty et al., 1998). In general, rainfall in the region ranges from 1000 to 1500 mm.

The climate of the Cerrado is tropical warm and semi-humid, with just two seasons, a dry
one from May to September and a rainy one from October to April. Monthly rainfall in dry
season (that include fall and winter) reduces considerably, reaching zero, resulting in a dry
period that varies from three to five months duration (Coutinho, 2000). The rainy season
(spring and summer) sometimes has short dry periods named locally "veranicos". The mean
annual temperatures vary between 22 and 27°C and the mean annual precipitations between
600 and 2.200 mm.

1.3 Fire regime and detection

Fire is one of the most important drivers that influence vegetation function and structure.
Fire incidence, in a given area or ecosystem, is part of a fire regime which has specific
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patterns of fire occurrences, frequency, size, severity, and sometimes vegetation and fire
effects as well. For example, savanna fires are often of low intensity and high frequency
(often annual), while forest fires are often of low frequency (once every few centuries) and
very high intensity (Bowman & Murphy, 2010). Most of the wildland fires occur by the
combination of edaphic, climatic and human activities (Roy, 2004). Natural fires are generally
started by lightning, with a very small percentage started by spontaneous combustion of dry
fuel such as sawdust and leaves. This kind of fire is insignificants in comparison to number of
fires started by humans (Roy, 2004). Most tropical fires are set intentionally by humans
(Bartlett 1955, 1957, 1961) and are related to several main causative agents (Goldammer,
1988): deforestation activities (conversion of natural vegetation to other land uses, e.g.
agricultural lands pastures, exploitation of other natural resources); traditional, but
expanding slash-and-burn agriculture; grazing land management (fires set by graziers,
mainly in savannas and open forests with distinct grass strata); use of non-wood forest
products (use of fire to facilitate harvest or improve yield of plants, fruits, and other forest
products, predominantly in deciduous and semi-deciduous forests); wildland/residential
interface fires (fires from settlements, e.g. from cooking, torches, camp fires etc.); other
traditional fire uses (in the wake of religious, ethnic and folk traditions; tribal warfare) and
socio-economic and political conflicts over questions of land property and land use rights.

Satellite-borne sensors can detect fires in the visible, thermal and mid-infrared bands. These
sensors have been used most extensively for detecting and monitoring fire activity from
landscape to global scales (Justice et al., 2003; Diaz-Delgado et al., 2004; Allan et al., 2003;
Brandis & Jacobson, 2003; Miller et al. 2003; Rollins et al., 2004; Bowman et al., 2003). Justice
et al. (2003) analyzed global remote sensing data and showed that occurrence of landscape
fire is not random across the world, which is strongly influenced by climatic variables, like
moisture deficit, wind speed, relative humidity and air temperature.

2. Methodology
2.1 Study area

The study area represents almost all (more than 90%) of the Brazilian savanna (Cerrado)
biome, excluding only the southern region, which is characterized by few small isolated
patches of savannas with intense anthropic activities like agriculture and ranching. The
Cerrado vegetation exhibits a wide range of physiognomies. Following the "forest-ecotone-
grassland" concept (Coutinho, 1978), the Cerrado ranges from campo limpo, a grassland,
to cerraddo, a tall woodland. The intermediate physiognomies (campo sujo -a shrub
savanna, campo Cerrado - a savanna woodland, and Cerrado sensu stricto - a woodland) are
considered ecotones of the two extremes.

The soil surface dries out during the dry season, leading the herbaceous and sub shrub plants
suffering water stress. Thus, leaves dry out and die, while the underground plant structures
are kept alive. The presence of dead leaves by water stress and also by frost greatly increases
the litterfall and, consequently, the risk of fire (Nimer, 1977; Coutinho, 2000).

2.2 Methodology

The methodology involves the use of two spatial approaches, regional and local, to analyze
the spatio-temporal relationships between environmental variables (precipitation and fire)
and vegetation (NDVI).
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The analysis unit at the local approach is the point, a specific pixel, which is obtained from
the grid of points that were selected using a stratified random sampling. This grid contains
separately the following types of vegetation: herbaceous, shrubs, deciduous trees, and
evergreen trees of the Brazilian savanna in our study area.

At the regional approach, the entire region is considered another analysis unit, which means
the Cerrado vegetation was not classified into four vegetation types. In this case, we
calculated a NDVI mean value, keeping together all vegetation types (from grassland to
forest) to each 16-days composite of the NDVI time series data.

The procedure applied to the vegetation data is also applied to the precipitation and fire
data. The results are seasonal profiles to each variable along the annual cycle which were
related using correlation and regression techniques. These seasonal profiles allow
calculating a gradient of vegetation seasonality, which is defined by the difference of
highest and lowest values of NDVI, precipitation, or fire. In the case of vegetation, the
degree of seasonality is directly related to the degree of deciduousness, that is, the degree
of leaf biomass loss during the dry season, when most plants suffer some degree of water
stress.

The spatial and temporal resolutions of the data are: 250m and 16-day, 1km and 1-day,
~20km and 3 hours, for MODIS NDV], fire hotspot and precipitation, respectively. These
data are arranged to standardize them in the same 16-day temporal scale. Data from 2002,
2005 and 2008 were collected since they are considered as years under normal climatic
condition, without the influence of El Nino-Southern Oscillation events.

2.2.1 Vegetation seasonality

The Normalised Difference Vegetation Index (NDVI), normalised ratio between near
infrared reflectance (NIR) and red reflectance (red), has been widely used in satellite-based
vegetation monitoring and modelling. NDVI is computed as:

NDVI = (NIR - red)/ (NIR + red) )

Index values can range from -1.0 to 1.0, but vegetation values typically range between 0.1
and 0.7. Higher index values are associated with higher levels of healthy vegetation cover,
whereas clouds and snow will cause index values near zero, making it appear that the
vegetation is less green.

Six Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference
Vegetation Index (NDVI) tiles (h12v09, h12v10, h12v11, h13v09, h13v10 e h13v11) were
joined to create a mosaic for the entire study area. Three annual time-series were prepared
for the following years: 2002, 2005 and 2008. Each annual dataset consists of 23 MODIS
NDVI data, at 16-day composite intervals, and 250 m spatial resolution. These data were
used to classify and analyze seasonal and phenology profiles of the Brazilian Cerrado
vegetation.

At this point, the methodology consists first in the classification of vegetation, from the
annual NDVI time-series data and using the tree decision technique, into four types: grasses
and herbs, shrubs, deciduous trees and evergreen trees. This classification uses the
phenological parameter named end of vegetation growing season, which corresponds to the
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following ranges of NDVI for each vegetation type: grasses and herbs (E1) from 100 to174,
shrubs (E2) from 175 to 199, deciduous trees (E3) from 200 to 219 and evergreen trees (E4)
from 220 to 255. Ground truth data was used to validate this classification.

The second part consists of selecting representative spatial points of vegetation types (Figure
1), which are obtained from the vegetation classification image. Each point corresponds to a
pixel on the image and is defined as our unit of analysis. A stratified random sampling
technique was used for the selection of points in the classification image. The number of
points to each vegetation types was proportional to its spatial coverage in the study area. So,
herbaceous (E1) represents 52% of the points, shrubs (E2) 24%, deciduous trees (E3) 15% and
evergreen trees (4) 9%.

The total number of points identified in the study area was N = 639, which are distributed as
follows: 251 points of herbaceous, 318 of shrubs, 59 of deciduous trees and 11 of evergreen
trees (Figure 1).
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Fig. 1. Location of Brazilian biomes highlighting the savanna (Cerrado) biome. The shaded
area is a mosaic of 4 MODIS-13Q1 tiles. Dots of different colors correspond to stratified
random sampling of the following vegetation types: herbaceous (E1), shrubs (E2), deciduous
trees (E3), and evergreen trees (E4).
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2.2.2 Fire seasonality

First, daily data of fire hot spot obtained as latitude/longitude coordinates, in ASCII format,
are converted in XYZ vector format data using a geographical information system (GIS) tool.
These daily vectors were used to create a new vector data set of 16-days composites
accumulating these daily data. Each composite were used to create a raster data set of fire
hotspot density by the use of the Kernel density estimator, according to the following
equation (Silverman, 1986):

FOH) =Y Ky (x— X)) 2

i=1
Where:

o Xy, Xy,...,Xnis sample of n data points (fire hot spot)
¢ His bandwith matrix
e  Kux - X;is normal probability density function (pdf) with mean X; and variance H

Kernel Density calculates the density of point features around each output raster cell. The
kernel function is based on the quadratic kernel function as described in Silverman (1986).
Conceptually, a smoothly curved surface is fitted over each point. The surface value is
highest at the location of the point and diminishes with increasing distance from the point,
reaching zero at the Search radius distance from the point. Only a circular neighborhood is
possible. The volume under the surface equals the Population field value for the point, or 1
if NONE is specified. The density at each output raster cell is calculated by adding the
values of all the kernel surfaces where they overlay the raster cell center.

2.2.3 Precipitation

We used two kinds of data for precipitation in the study area for the years 2002, 2005 and
2008. First, Tropical Rainfall Measuring Mission (TRMM) multisatellite rainfall data (3B42
product), which has 0.25 degree spatial resolutions and 3-hours temporal resolution.
Second, meteorological station rainfall data scattered throughout the study area, which has
1-hour temporal resolution.

These two datasets (TRMM and observed data) are combined following the approach of Vila
et al. (2009), which use the Barnes objective analysis (Barnes, 1973; Koch et al., 1983) for data
interpolation. This analysis allows the incorporation of observed data in a grid of estimated
data and also improves its spatial resolution. As result, the new precipitation data has 0.2-
degree spatial resolution and 1-day temporal resolution.

3. Results and discussion
3.1 Regional analysis

Figure 2 shows seasonal profiles of vegetation and precipitation in the Cerrado region for
the three years analyzed (2002, 2005 and 2008). These results show that the Cerrado
vegetation seasonality is well defined, which in turn has a direct relationship to the
seasonality of precipitation. However, there is a time lag ranging from 1 (16 days) to 3 (48
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Fig. 2. Annual seasonality of vegetation and precipitation in the years 2002, 2005 and 2008
for the Cerrado biome. Each year consists of 23 16-days composite periods. Precipitation is
the daily mean rainfall values for a 16-days composite period in mm (first y axis) and
vegetation the mean NDVI values for the same period (second y axis).

days) periods between the beginning of the rainy season and the beginning of the vegetation
growing season.

Figure 3 shows seasonal profiles of vegetation and fire in the Cerrado region for the three
years analyzed (2002, 2005 and 2008). These results show, as in Figure 2, that the fire
occurrence in the Cerrado has well-defined seasonality, which in turn has a direct negative
relationship to the seasonality of vegetation. That means, the highest fire occurrence during
the growing cycle of fire is related to the greatest loss of plant cover during the dry season,
with a time lag ranging from 0 to 3 periods (0 to 48 days).
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Fig. 3. Annual seasonality of vegetation and fire in the years 2002, 2005 and 2008 for the
Cerrado biome. Each year consists of 23 16-days composite periods. Fire is the daily mean
value of the density of hotspot within a 10km radius for a 16-days composite period and
vegetation the mean NDVI values for the same period (second y axis).
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3.2 Local analysis

The results presented show the seasonality of vegetation, rainfall and fire in places (points)
defined by the grid points representing the four vegetation types analyzed in the study.

3.2.1 Seasonality of vegetation

Figure 4 shows the seasonal profile of four vegetation types over the three years analyzed.
These results show a clear difference, regarding the degree of vegetation seasonality, among
the four types of vegetation analyzed, according to the following gradient: herbaceous (E1),
with strong seasonality, shrubs (E2), deciduous trees (E3), and evergreen trees (E4), with
weak seasonality.

The vegetation phenology metrics are shown in Figure 5. Figure 5a shows annual maximum and
minimum NDVI values, indicating the highest and lowest vegetation productivity respectively,
for each type of vegetation in the three years analyzed. Figure 5b shows the difference between
the maximum and minimum NDVI as a percentage, indicating the degree of seasonality. Also
Figure 5a shows a slight difference between the maximum NDVI values, high plant productivity
in the four vegetation types, while the difference between the minimum NDVI values, lower
productivity, in the four vegetation types is significant. In general, the degree of seasonality of the
vegetation (Figure 5b) was consistently detected in the four vegetation types. That is, small plants
with low canopy (shrubs and herbaceous) have higher degree of seasonality than tall one with
high canopy, which in turn have lower degree of seasonality.

3.2.2 Seasonality of precipitation

Figure 6 shows the seasonal profile of rainfall recorded in the same sampling points of the
four vegetation types over the three years analyzed. These results show, in the beginning of
the year during the rainy season, lower rainfall at sites where herbaceous and shrubs were
registered than at sites where deciduous and evergreen trees are predominant. This result is
a first indicator that shows a relationship between rainfall gradient and vegetation cover
gradient. These gradients range from sites with higher precipitation, associated with high
canopy plants (evergreen trees), to those with less precipitation, associated with a lower
canopy plants (herbaceous).

3.2.3 Seasonality of fire

Figure 7 shows the pattern of the fire season recorded in the same sampling points of the
four vegetation types over the three years analyzed. The results of fire occurrence
throughout the Cerrado region show that there is a pronounced seasonality in all vegetation
types analyzed with a peak in the months of greatest drought in the dry season.

The results show a well-defined gradient of fires in the four types of vegetation. This
gradient varies from lower fire density in evergreen trees (E4), with shorter periods of time
(12 to 22) throughout the annual cycle, to higher fire density in herbaceous plants (E1), with
more periods of time (1 to 23, except 2), as seen in Figure 7. Most of the fire occurrences in
the four types of vegetation were recorded in 2005 and 2008 indicating the occurrence of an
inter-annual variability of fire. The higher fires were recorded between the periods from 15
to 21 taking into account the four vegetation types and the three years analyzed.
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E1: herbaceous; E2: shrubs; E3: deciduous trees; and E4: evergreen trees.

Fig. 4. Annual seasonality of vegetation derived from NDVI data for the years 2002, 2005
and 2008 in the four vegetation type analyzed. Each year consists of 23 16-days composite
periods.
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Fig. 5. Metrics of vegetation phenology derived from NDVI data used in Fig. 4. Maximum
and minimum NDVI values indicate periods of higher and lower plant productivity (left)
respectively, and the difference of both, as a percentage, indicates the degree of seasonality
of each vegetational type in the three years analyzed.



88

Remote Sensing — Applications

=
I

Herbaceous (E1)

m2002 m2005 m2008

[y
[}

=
(=]
—

Rainfall (mm/day)
"] =Y (=3} co

o

1 2 3 45 6 7 8 91011121314151617 18192021 2223
16-days composite

Shrubs (E2)

W Sériel WSérie2 mSérie3

Rainfall (mm/day)

1 2 3 456 7 8 910111213141516171819 20212223
16-days composite




Seasonal Variability of Vegetation and lts
Relationship to Rainfall and Fire in the Brazilian Tropical Savanna

89

Deciduous trees (E3)

=
=]

Rainfall (mm/day)
(03]

14
W Sériel WSérie2 mSérie3
— 12
>
]
2 10
£
:E__ 3 T
K
c 6 %%t
&
4 I ] B---RE
2 ......................
0
1 2 3 45 6 7 8 91011121314151617 1819 2021 22 23
16-days composite
Evergreentrees (E4)
14
W Sériel WSérie2 mSérie3
12

1 2 3 45 6 7 8 9 1011121314151617 18 19202122123
16-days composite

E1: herbaceous; E2: shrubs; E3: deciduous trees; and E4: evergreen trees.

Fig. 6. Annual seasonality of precipitation for the years 2002, 2005 and 2008, in places where
we sampled the four vegetation types analyzed. Each year consists of 23 16-days composite
periods. Precipitation in mm is the daily mean rainfall values for a 16-days composite

period.
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Fig. 7. Annual seasonality of fire for the years 2002, 2005 and 2008, in places where we
sampled the four vegetation types analyzed. Each year consists of 23 16-days composite
periods. Fire is the daily mean value of the density of hotspot within a 10km radius for a 16-
days composite period.
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3.2.4 Relationship between vegetation (NDVI) and environmental variables
(precipitation and fire)

The results showed in Table 1 indicate significant positive correlation between NDVI and
precipitation in herbaceous, shrubs and deciduous trees, and negative correlation between
NDVI and fire in the same three vegetation types. In the case of evergreen trees, the
correlation between NDVI and precipitation is positive but not significant, and between
NDVI and fire is negative, but also not significant. These results are corroborated in
subsequent analysis.

El E2 E3 E4 El E2 E3 E4

Prec Prec Prec Prec Fire Fire Fire Fire
E1-NDVI 0.60 0.58 0.67 0.70 -0.69 -0.68 -0.66 -0.41
E2-NDVI 0.52 0.51 0.60 0.65 -0.68 -0.72 -0.70 -0.43
E3-NDVI 0.20 0.19 0.31 0.36 -0.61 -0.73 -0.75 -0.51
E4-NDVI 0.00 -0.01 0.16 0.09 -0.43 -0.57 -0.66 -0.47
E1-Fire -0.40 -0.39 -0.43 -0.49 1.00 0.77 0.65 0.35
E2-Fire -0.31 -0.30 -0.34 -0.42 0.77 1.00 0.65 0.41
E3-Fire -0.25 -0.24 -0.31 -0.38 0.65 0.65 1.00 0.47
E4-Fire -0.09 -0.08 -0.19 -0.20 0.35 0.41 0.47 1.00

Table 1. Correlation matrix of vegetation, rainfall and fire variables, highlighting the
significant correlations between the following couple of variables: NDVI and rainfall, NDVI
and fire, and rainfall and fire; which taking into account the four types of vegetation
analyzed (E1: herbaceous; E2: shrubs; E3: deciduous trees; and E4: evergreen trees).

Figure 8 shows the result of the linear regression analysis between vegetation and
precipitation for each vegetation type. Each line in this figure with a specific color shows the
degree of fit between the points distributed for both variables by type of vegetation.
Although this degree of fit between both variables is low, the results indicate that there is a
gradient of fit between precipitation and vegetation, here named as precipitation gradient,
which ranges from high to low coefficient of correlation (R2) following the sequence:
herbaceous-E1 (high R2), shrubs-E2, deciduous trees-E3 and evergreen trees-E4 (low R2).

Thus, as the R2 value increases the influence of precipitation on vegetation increases, so
herbaceous is more dependent on rainfall, in the annual cycle, than the other types of
vegetation analyzed. That means, herbaceous are strongly dependent on rainfall in order to
increase its vegetation cover. In the dry season, these kinds of species lose their leaves or
even die.

At the opposite end of the precipitation gradient, where the evergreen trees-E4 are
positioned, precipitation has weak influence on the vegetation cover, which means that in
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Fig. 8. Regression of precipitation (independent variable) and NDVI (dependent) for each
vegetation type analyzed. NDVI values range from 0 to 255 (x-axis). Precipitation in mm is
the daily mean rainfall values for a 16-days composite period (y-axis). N = 69.

the dry season, evergreen trees are able to capture water from the vicinity of river courses,
as occurs in gallery forests, or from deep soil, where the length of tree roots reach deep and
moist soil layers, allowing these trees to replace their leaves throughout the year, which
gives them their evergreen nature.

An analyses of variance (ANOVA) performed to evaluate these regressions is shown in table
2. Results indicate that, except for the regression between NDVI and Precipitation for the
evergreen trees (E4) class, all regressions are significant at the 0.99 confidence level.
Moreover, the relationships between NDVI and Fire were significant for all classes.

NDVI x Prec NDVI x Fire
R? F P R? F P
El 0.3558 37.01 <0.01 0.4795 61.72 <0.01
E2 0.2608 23.64 <0.01 0.5172 71.77 <0.01
E3 0.0959 711 <0.01 0.5575 84.40 <0.01
E4 0.0072 0.49 0.49 0.2218 19.10 <0.01

Table 2. Analysis of Variance (ANOVA) of linear regression NDVI x Precipitation (Prec) and
NDVI x Fire. Bold values indicate the case where regression was not significant.
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Figure 9 shows the result of the linear regression analysis between vegetation and fire for
each vegetation type. Each line in this figure with a specific color shows the degree of fit
between the points distributed for both variables by type of vegetation. The results indicate
that there is a gradient of fit between fire and vegetation, here named as fire gradient, which
ranges from high to low coefficient of correlation (R2) following the sequence: deciduous
trees-E3 (high R2), shrubs-E2, herbaceous-E1, and evergreen trees-E4 (low R2).
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E1: herbaceous; E2: shrubs; E3: deciduous trees; and E4: evergreen trees.

Fig. 9. Regression of fire (independent variable) and NDVI (dependent) for each vegetation
type analyzed. NDVI values range from 0 to 255 (x-axis). Fire is the daily mean value of the
density of hotspot within a 10km radius for a 16-days composite period. N = 69.

The fire gradient identified above indicates that there is direct relationship between NDVI of
the main vegetation types (herbaceous, shrubs and deciduous trees), which make up the
Cerrado vegetation, and fire, indicating the role of fire in the maintenance of these
vegetation types.

Fire occurs with greater intensity at the end of dry season. First of all, fire consumes part of
the burk and organic matter of the plant, after the first rains, in the beginning of the rainy
season, these partially burned plant sprouts new shoots with greater vigor.

At the opposite end of the fire gradient, where the evergreen trees-E4 are positioned, the fire
occurs in lower proportion in these trees, however, unlike what happens with other types of
vegetation, the effect of fire is pernicious, it can damage or even eliminate some species in
this vegetation type according to the intensity level.

The multiple regression analysis indicates that there is a direct relationship between
precipitation and fire, and vegetation index (NDVI) in the four vegetation types of the
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savanna vegetation. The multiple coefficients of determinations (R2) show that the
environmental variables as a whole (precipitation an fire) follow a gradient of high influence
in vegetation types with low vegetation cover (herbaceous R2=0.67 and shrubs R2=0.65) to
low influence in that with high vegetation cover (deciduous trees R?= 0.55 and evergreen
trees R2=0.27). Results from the ANOVA of the multiple regression presented in Table 3
indicate that, when the analysis is performed considering both independent variables, the
multiple regression gives statistically significant parameters, for all classes of vegetation.
However, an univariate test of significance performed for each independent variable show
that precipitation alone is not significant correlated to the vegetation index for both tree
classes (E3 and E4).

Whole model R Univariate test of significance
R? F P F_prec F_fire p_prec p_fire
El 0.6001 49.52 <0.01 19.90 40.31 <0.01 <0.01
E2 0.6141 52.52 <0.01 16.59 60.43 <0.01 <0.01
E3 0.5648 42.83 <0.01 1.12 71.11 0.29 <0.01
E4 0.2220 9.42 <0.01 0.01 18.22 0.92 <0.01

Table 3. Analysis of Variance (ANOVA) of the multiple regression between NDVI
(dependent variable) and precipitation and fire (independent variables). Bold values
indicate the cases where regression was not significant.

4. Conclusions

The response of vegetation NDVI is more related to the variation of fire than to variations in
precipitation in Cerrado region. Vegetation NDVI responds to variation of precipitation
with a time lag ranging from 16 to 48 days, while vegetation NDVI responds to variation of
fire with a time lag ranging from 0 to 48 days.

The relationship between vegetation types, derived from NDVI, and precipitation, derived
from TRMM, shows a gradient of positive correlations in vegetation types with low
vegetation cover, herbaceous (r= 0.60) and shrubs (r= 0.51), to very little or none with high
vegetation cover, deciduous trees (r= 0.31) and evergreen trees (r= 0.09). On the other hand,
the relationship between vegetation and fire hotspot shows a gradient of negative
correlation, which is stronger in herbaceous (r= 0.72), shrubs (r= 0.74) and deciduous trees
(r=-0.73) than in evergreen trees (r=-0.52).

Our analyses show that vegetation cover increases are related to increases in precipitation
and decreased in density of fire hotspots. We also found high density of fire hotspot in the
dry season in deciduous trees, shrubs and herbaceous which suggesting the high removal of
CO2 (greenhouse gas) of the land cover to the atmosphere somehow influencing the
dynamic equilibrium of this (atmosphere) in the region of the Brazilian tropical savanna.
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1. Introduction

Remote sensing has been considered a promising technology as support for agriculture since
its beginnings, due to its contribution for a climatic perspective or for understanding of
processes related to land. However, significant applications occurred only in the late twentieth
century, as result of the creation of best orbital systems, with higher spatial resolution, more
bands and stereoscopic capture. Several orbital platforms, as AQUA/TERRA, Quickbird and
Ikonos are examples in that sense (Moreira, 2005; Embrapa, 2009).

Engineering innovations, new sensors and methods of digital image processing must be
performed simultaneously so that the advances in remote sensing will be achieved.
Anyway, the incorporation of orbital images on geographic information systems (GIS) and
their post-processing appear as significant application since a daily life perspective,
specially when classification methods are involved, because of their relation to land use,
land cover and easy interpretation.

This chapter considers classification methods applied on orbital imagery in Southern Brazil,
in the coastal plain of Rio Grande do Sul state (Fig. 1), where a sequence of lagoons and
lakes of different sizes occurs in the context of subtropical to temperate climate with cold
winters and hot summers, being organized according to the following four sections:

About classification methods.

Evaluation of rice planting area in the vicinity of Caiuba lagoon (1981 - 2009).
Analysis of land cover evolution in the municipality of Montenegro (1993 - 2008).
Comparison and evaluation of errors.

All the exposed data are related to research projects of the Embrapa Temperate Climate
Research Center, Pelotas, Rio Grande do Sul state, one of the 45 research centers of the
Brazilian Agricultural Research Corporation (Embrapa) spread on the national territory.

2. About classification methods

Classification methods were created in the statistical context, when a collection of objects or
samples could be characterized and separated in different classes (Davis, 1986). The method
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Fig. 1. Location of the areas of study in the context of South America, Brazil and the State of
Rio Grande do Sul. Montenegro municipality as gray levels composite of the bands 1, 4 and
5 TM/Landsat 5 (Miranda, 2002, 2005) and Caiuba lagoon in gray levels composite of the
bands 3, 2 and 1 ASTER (NASA, 2004) on september 26th, 2000.

was extended for processing of digital images considering the pixels as objects to be
classified (Crosta, 1993, Lillesand & Kiefer, 1994, Jensen, 1996). The application of the
classification methods on satelite imagery is affected by two main factors:

i.  Intervention of user.
ii. Criteria of definition for the groups.

The “supervised classification” is included in topic (i), when the user defines the groups
through digitalization of uniform spectral answer. Statistics are calculated for each group, so
the classification is performed for all the image (pixel by pixel). The unsupervised
classification eliminates the intervention of the user; then, the software defines the groups
by means of scattergrams “band versus band”, where isolines related to distribution density
of the pixels are analysed (Crosta, 1993).

Different options for case (ii) are posible, by instance, criteria can use the standard deviation
for the parallelepiped method or a minimum distance when an eliptical form is defined for
each group or a combination of the later with statistical probability, that is, the maximum
likelihood method. Jensen (1996) presented other criteria of classification, as Isodata method
and the Fuzzy method.



Land Cover Change Detection in Southern
Brazil Through Orbital Imagery Classification Methods 101

Spectrometric methods measure the response of target materials in the laboratory or field.
Then the spectral patterns are simulated for a specific sensor through a specialized software,
so that a sequence of orbital images is classified according to the pattern generated by that
software (Lillesand & Kiefer, 1994; Pontara, 1998; Moreira, 2005).

Classification of remote sensing images appear as useful tool in terms of land use, whether
in local scale or in regional scale. Filippini-Alba and Siqueira (1999) classified land use in the
municipality of Pelotas, Rio Grande do Sul state, Brazil, according to nine classes:
agriculture, clay soils, forestry, natural forest, pastures, soil without vegetal cover, urban,
water and wetlands. Natural forest and pastures occupied 23% and 30% of the territory
respectively, with intense interference between the classes “urban” and “soil without
vegetal cover”. Similar classes were considered by Bolfe et al. (2009) for land use in Rio
Grande do Sul state, but with different results. Agriculture and pastures occurred 32% and
50% of the territory respectively with only 3% for natural forest. The differences between
both studies are easy explained in term of scale, because in the two occasions Landsat
images were used and a municipality was considered at the former and a state at the latter,
with territory difference of 1 to 155 times in size.

Lu et al. (2004) discriminated seven categories of change detection techniques: (i) algebra; (ii)
transformation; (iii) classification; (iv) advanced models; (v) Strategies with geographic
information systems (GIS); (vi) visual analysis and (vii) miscellanea. The classification
methods are detached, with six different modalities. One of them, the “Post-classification
comparison”, is predominantly used in this chapter. That is, multi-temporal images are
classified separately into thematic maps, then the classified images are compared pixel by
pixel. The “Post-classification comparison” minimizes the atmospheric impacts, the
environmental differences among multi-temporal imagery, as well as differences related to
the sensor kind, providing a complete matrix of change information. However, some
disadvantages can be appointed, because a great amount of time and expertise is required
and, by other side, the final accuracy depends on the quality of the classified image due to
the weather condition on that date.

Guild et al. (2004) quantified the areas of deforestation in the Amazonian forest, state of
Rondonia, Brazil. The tasselled cup transformation (Crist & Kauth, 1986) was applied with
the Landsat imagery from the years 1984, 1986 and 1992. The variables brightness, greenness
and wetness were evaluated for each year, then, a file integrated the nine levels of
information (three variables by three years). These data were processed through principal
components and classification methods with overall accuracy of 79.3, 68.4% and 71.4%, for
tasselled cap land cover change classification, tasselled cap with principal components land
cover change classification and tasselled cap image differencing, respectivelly. Final classes
were a combination between land cover and time, so change detection was quantified.

The two applications present in this chapter consider the Supervised classification method
with maximum likelihood as criteria for definition of the classes. The proximity of the study
areas and knowledge of the territory justify this option to take advantage of available
information. Unsupervised classification is a fast proccess, good for unknown or outlying
areas, when truth of field is unavailable and most time-consuming after processing, due to
the need of class identification. Maximum likelihood criteira is restricted by software and
time-consuming but it represents a improvement in relation simple criteria as the
parallelepiped or the minimum distance.
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Acording to Lu et al. (2004), methods (iii) and (v) were considered in this chapter.
Classification (iii) was applied in both conditions, Caiuba lagoon and Montenegro
municipality. The extraction of the poligon corresponding to the “potential area for
agriculture” in the vicinity of Caiuba lagoon represents a tipical strategy of GIS (v).
Softwares of digital images processing and GIS are very similar. Both can execute multilayer
processing, including raster/vector files and logic/mathematical algorithms, but digital
images processing is more specific for raster format and GIS for vector format.

3. Evaluation of rice planting area in the vicinity of Caiuba lagoon (1981-2009)

The Caiuba lagoon is part of the litoral lacunar complex of Rio Grande do Sul state,
southern Brazil and it extends by 3300 hectares, in the municipality of Rio Grande, 15
kilometers to north extreme from the Taim Ecological Reserve and 45 kilometers to south
from Patos lagoon (Fig. 1). This significant source of water is used mainly for irrigation of
rice, specially when the Merin lagoon is further. Accordingly, the Foundation for Research
Support in State of Rio Grande do Sul (FAPERGS) funded a research project leadered by
the Federal University of Rio Grande (FURG) attempting to study the sustainability of the
productive system, as well as the effects on local biodiversity. The Embrapa Temperate
Climate Research Center collaborated to the evaluation of the agricultural area in the
period 1973 to 2009 by satellite images. Imagery of Landsat satellite of different years was
considered for similar times (Table 1), for the scenes corresponding to orbit 237 points 82
and 83 of the worldwide reference system 1 (MSS sensor) and for the scenes
corresponding to orbit 221 points 82 and 83 of the worldwide reference system 2 (TM
sensor). Thus, the atmospheric conditions were more or less equivalent, deriving in
comparable image quality. Each image was evaluated for the various land uses and the
areas occupied for the different classes were calculated in order to study the historical
evolution of the process during the above period.

The first satellite of Landsat series was launched in 1972 with the multispectral scanner
(MSS), with four bands in visible - near infrared and one in thermal infrared and

Sensor Date Range of wavelengh and IFOV
MSS Sep. 6th, 1973 500 - 600nm, 600 - 700nm and 700 - 800nm, IFOV = 79m
MSS Mar. 13th, 1981
™ Jan. 22nd, 1991 | 630 - 690nm, 760 - 900nm and 1550 - 1750nm, IFOV = 30m
™ Dec. 21st, 1996
™ Dec. 19th, 2001
™ Jan. 20th, 2002
™ Jan. 28th, 2005
™ Jan. 2nd, 2007
™ Jan. 7th, 2009

Table 1. Description of basical parameters of the images of Landsat series used for
evaluation of the planting area of rice in the vicinity of tha Caiuba lagoon.
IFOV = instantaneous field of view. Source: INPE, 2010b.
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instantaneous field of vision (IFOV) of 79 meters and 240 meters respectively. Improvements
of the system included more bands (short-medium infrared) and reduction of IFOV to 30
meters and 120 meters respectively, for the thematic mapper (TM) in 1982 (Jensen, 1996). A
panchromatic band was developed for the Landsat 7 satellite, with the TM plus sensor, but,
the series reached to the end. The Landsat 5 satellite was an engineering success, the
platform was launched in 1984 and is still on orbit. Anyway, the Landsat series represents
the greatest collection of terrestrial images for environmental applications, specially, since a
historical point of view.

Composites of three bands were used, with green band (500 - 600 nm), red band (600 - 700
nm) and near infarred band (700 - 800 nm) for the MSS sensor and the red band (630 - 690
nm), the nearinfarred band (760 - 900 nm) and the shortmedium infrarred band (1550 - 1750
nm) for TM sensor. These games of bands are not equivalent, then similar patterns of colour
were adjusted by visual observation.

Digital imagery was registered for the Universal Transverse of Mercator projection(UTM),
zone 22 South with the datum WGSB84, after that, a mosaic of pairs of scenes was composed,
by instance, scene 237/82 and 237/83 for MSS sensor. So the mosaic was cutted evolving the
study area and a file with the mentioned three bands was created for each date. Initially,
data were processed by the supervised classification according to the maximum likelyhood
criteria. Eigth poligons of homogeneous features were digitalized with the software ER-
Mapper (1995), deriving in the test areas, then each pixel of the corresponding image was
classified according to its similarity with the parameters of each test area (beach/dunes,
forestry, rice crops, pastures, sandy fields, soil without vegetal cover, water and wetlands).
A second strategy was developed to improve results, so the "potential area for agriculture",
that is rice crops, pastures and soil without vegetal cover, was isolated and classified by
similar way.

Results of the preliminar process of classification considered a rectangle of 30 km wide and
65 km long for the images of 2001, 2002 and 2005 (Fig. 2). The "potential zone for
agriculture" is represented by a “central zone” in direction south - north to the East of Merin
Lagoon, where agricultural areas are discriminated. A confusion between rice crop class and
wetlands class is observed in the west - north sector of the study area. Sandy fields are long
structures related to old movements of the sea (Atlantic Ocean), where a low charge of
livestock is a common use and forestry is developed eventually, as observed in the images.
The area occupied by water bodies was almost constant, that is 19 - 21% (Table 2), but, the
wetlands were reduced in area in 2005, a year of drought probably, then, there was an
increment in the area occupied by the class "Soil without vegetal cover" and a reduction of
the area occupied by the class “Pastures”.

When the "potential zone for agriculture" was isolated, the precison of evaluation of the area
occupied by pastures, rice crops and soil without vegetal cover (SWVC) was improved. The
kind of sensor, the date of the image and the meteorological conditions induced diferences
among the imagery of different dates (Fig. 3). The images of 1973 and 1981 present a
different characteristics due to captation with the MSS sensor. The first image corresponds
to september, when the culture had not been implanted yet. Some agricultural areas showed
different pattern in 2001 and 2002 (same harvest) related to waterlogged soils, probably, due
to intense rain in that time. A differencial answer of the vegetation in the agricultural areas
was observed since 2005, what suggests a evolution of the vegetal development of the rice
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Fig. 2. Preliminary classification in the Caiuba region.

Image date Dec. 19th, 2001 Jan. 20th, 2002 Jan. 28th, 2005

Water, % 19.2 21.3 20.0
Wetland, % 17.8 185 11.3
Pastures, % 20.2 12.4 8.9
Rice crops, % 10.2 9.1 104
Sandy fields, % 17.7 13.6 15.1
Beach/dunes, % 6.7 6.3 10.5
Florestry, % 43 3.6 46
Clouds, % 1.5

SWVC,% 3.9 13.8 19.3
Total area, ha 202,777 204,088 208,907

Table 2. Preliminary areas of land cover calculated by classification methods in the vicinity
of Caiubé region through Landsat-TM images in the period 2001 - 2005. SWVC = Soil
without vegetal cover.

varieties or, perhaps, the introduction of a new crop. All the images show a intense rotation
among pastures, rice and fallow lands, what lets a reduction of inputs, rest of the soil and
improvement of productivity.
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Fig. 3. Images Landsat corresponding to the “Potential zone for agriculture” for different
dates.
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The poligonal area was classified according to five classes: (1) Undefined; (2) Pastures; (3)
Rice crops; (4) Soil without vegetal cover; (5) Water. The class “Undefined” represents rice
crops or pastures depending on the year, thus it was incorporated to class “Pastures” in
1973, 1981 e 2001 and to class “Rice crops” in 1991, 1996, 2002, 2005, 2007 e 2009, accordingly
the interpretation of the images. So, the classes “Pastures”, “Rice crops”, “SWVC” and
“Water” were evaluated for occupied area (Fig. 4; Table 3).

The occurrence of water is almost insignificant inside the “potencial zone for agriculture”,
because the irrigation is performed through the water of the lagoons Caiuba and Mirim. The
area occupied by the class “Rice crops” seems to depend on the vegetal developping, with
restricted values when months previous to January are evolved. This fact was checked with
the images of 2001 and 2002, corresponding to the same harvest, Dezember and January
respectively.

By this reason, only the data corresponding to the months of january and march, when the
vegetal developping of rice is reached, were consider in the graphic of “occupied area” as a
function of time (Fig. 5).

Year Water Pastures Rice crops SWVC Total
06/09/1973 173 19057 12856 13565 45652
13/03/1981 85 28593 13915 6592 49185
22/01/1991 52 17110 18751 15886 51798
21/12/1996 825 22534 12042 22534 57935
19/12/2001 56 30523 14404 8516 53498
20/01/2002 120 17579 20090 16299 54087
28/01/2005 49 13144 21963 20246 55402
02/01/2007 57 25062 21054 9467 55640
07/01/2009 80 5302 21029 31124 57535

Table 3. Area evaluation of land cover classes for the "potential zone for agriculture". The
class "Undefined" was incorporated to the class "Pastures" or the class "Rice crops" according
to the year. SWVC = Soils without vegetal cover. Data in hectares.

The area of the "Potential zone for agriculture" was delimited by digitalization, but a soft
and constant increment is evident during the period 1981 to 2009. By other side, the area
occupied by the class "Rice crops" was evaluated by classification methods; after a period of
increment, the class reached a maximum in 2005 with 22 thousand hectares, then there was a
stabilization in 2007 - 2009 with about 21 thousand hectares. The classes "Pastures" and
"SWVC" showed oscillation in complementary way, because the sum of both classes was
almost constant. As classes "Potential zone for agriculture" and "Rice crops" presented linear
behavior in the graphic Area against time, thus, linear regression models were adjusted
(Table 4).

The parameter R? is the correlation coefficient between the real variable and the adjusted
variable by the model. So, a value near zero indicates bad adjust of the model and a value
near one indicates a good adjust of the model. The parameter A indicates the annual
growing rate for of the occupation area of the respective class. The area occupied by the
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Fig. 4. Images Landsat post-classified corresponding to the “Potential zone for agriculture”
for different dates.
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Fig. 5. Areas of land cover as function of the year in the “Potential area for agriculture”
(Total), Caiuba region. SWVC = Soils without vegetal cover.

Class of land cover A B R2 Period
Potential zone for agriculture 271 486996 0.97 1981 - 2009
Rice crops 302 584736 0.93 1981 - 2005

Table 4. Parameters of the linear regression models for the area of classes "Potential zone for
agriculture" and "Rice crops" as a function of time (Area = A*year - B, in hectares).

"Potential area for agriculture" grew with a rate of 271 hectares by year, little inferior than
the growing rate for the area occupied by the class "Rice crops", that is 302 hectares by year.
Parameter B is the value of area in the year zero without real significance in this case.

Data of the municipality of Pelotas (Filippini Alba & Siqueira, 1999) and data for the state of
Rio Grande do Sul (Bolfe et al., 2009) were compared to data presented here, after legend
conversion. The correlation coefficient of the data discussed here was 0.54 with data of the
first paper and 0.77 with data of the second one. Some classes showed significant
differences, by instances Bolfe et al. (2009) evaluated 50% of area occupied by "pastures" in
the state, but the value was about 30% for the other works. The area occupied by water was
19-20% in the Caiuba region, due to the occurrence of the lagoons. This value was 1% in the
municipality context and 3% in the regional one.

4. Analisys of land cover evolution in the municipality of Montenegro, Estado
do Rio Grande do Sul (1993-2008)

The municipality of Montenegro is located 55 kilometers South from Porto Alegre (state
capital), with a territorial area of 420 square kilometers and population about 59,557
inhabitants. Thirty-three municipalities, including Montenegro, integrate the vegetal
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carbon productive pole. The production of black acacia for the manufacture of tannin is an
important activity for the economy of the municipality since 1948, when the first factory
of tannin derived from the bark of acacia was installed (TANAC, 2010). Recently, the fruit
production is becoming increasingly important in the context of local economy. The
intense forest exploitation, the occurrence of new uses of land and a moderate urban
occupation oriented the choice of the municipality of Montenegro for this research,
focusing on the detection of temporal changes in the territorial organization, during the
period 1993 to 2008, in the context of the project “Development and evaluation of
products and co-products of the vegetal carbon productive chain in the State of Rio
Grande do Sul, aiming for sustentability”, with coordination of Embrapa Temperate
Climate Reasearch Center.

The topography of the municipality is complex when compared to the previous case, while
in the southeastern region occurs a flat terrain changing for slightly wavy; in the north
sector occur a basalt plateau with a rugged relief.

Imagery of the Landsat 5 satellite were used, corresponding to the scene of orbit 221, points
80 and 81 for WRS-2 (INPE, 2010b), for three different dates: September 8th, 1993; August 8th,
1999 and October 3th, 2008. The initial data processing was performed with the software
Marlin (INPE, 2010a), after that, the software ER-Mapper (1995) was used for classification
according to isoclass likelyhood criteria. The images were registered with known ground
control points, considering terrestrial features of easy identification, so that, the coordinates
systems were uniformized and small errors eliminated. The projection used was the
Universal Transector of Mercaptor (UTM), region 22 South, datum WGS 84.

Eigth classes were defined by the supervised classification process according to maximum
likelihood criteria. The classes "Annual crops", "Perennial crops" and "Pastures/SWVC"
were mapped together in gray tones (Fig. 6). The annual crops reached a maximum area of
production in 1999 (Table 5) with poor production in previous and posterior times. By
another hand, the perennial crops reached a maximum in 2008, after a significant increment
in the previous years, as consequence of an important citrus production. Pastures and
SWVC were mapped together due to the dinamic process of changes evolving both classes.
A little reduction of the area occupied for both classes was observed.

Class of land cover 1993 1999 2008

Annual crops 13.9 5835  21.2 8884 121 5084
Forestry 19.2 8076 5.5 2299 18.3 7686
Native forest 18.9 7948 23.0 9675 21.3 8957
Pastures/SWVC 27.0 11340 26.8 11246 23.2 9733
Perennial crops 8.9 3737  18.2 7655 19.6 8226
Unevaluated 33 1370 1.9 810 0.4 173
Urban 6.5 2729 21 878 3.3 1377
Water 23 968 13 554 18 767
Units % hectares % hectares % hectares

Table 5. Areas calculated with TM/Landsat 5 imagens for the period 1993 - 2008 through
classification methods for Montenegro municipality (Schroder & Filippini-Alba, 2010a).
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- Annual crops
- Perennial crops

Fig. 6. Evolution of land cover related to agriculture and pastures/SWVC in the
municipality of Montenegro based on Landsat 5 imagery (1993 - 2008).
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The class “Forestry” showed a minimum of planting area in 1999, what is evident in the
map of spatial distribution (Fig. 7.), but the class “Native forest” showed a maximum that
year (Fig. 8). The class “Urban” includes other features besides the urban regions, by
instance outcrops, which explains its high value in 1993. The density of the central spot in
the image of 2008 suggest a real increment of urban population that year.

- Urban

2008

Fig. 7. Evolution of land cover related to the classes “Native forest”, “Forestry” and “Urban”
in the municipality of Montenegro based on Landsat 5 imagery (1993 - 2008).
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Fig. 8. Evolution of the land cover classes considered in this chapter in the municipality of
Montenegro, Rio Grande do Sul state, Brazil.

5. Comparison and evaluation of errors

Two strategies were used to analize the errors of the classification methods: (a) Duplication
of process with new test areas for the same classes in Caiuba region. (b) Confusion matrixs
by truth of field for Montenegro municipality. Each strategy is related to a different error
condition, that is, error of processing and error of the method respectively.

The maximum error for case (a) was for the class "Soils without vegetal cover", more or less
2% when the overall area was evaluated (Table 6). The interference of the clouds was of the
same order (value insered with the class “Beach/dunes/clouds”). A confusion between
dunes and water (sediments) occurred in the Caiuba region (central part of Fig. 9). Other
sectors appear very similar for both images.

Class Image A Image B
Water, % 20.3 21.3
Wetland, % 18.9 18.5
Pastures, % 12.2 12.4
Rice crops, % 7.7 9.1
Sandy fields, % 13.4 13.6
Beach/dunes/clouds, % 8.4 7.8
Forestry, % 3.6 3.6
SWVC,% 15.6 13.8

Table 6. Errors derived from classification with new test areas in the Caiuba region for the
image of Jan. 20th, 2002 in a total area of 204088 hectares. SWVC = Soil without vegetal cover.
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15km

Fig. 9. Comparison of the classification in Caiuba region with Landsat image of 2002 for
different test areas.

Data from Montenegro municipality considered the confusion matrix constructed with the
truth of field for the Landsat 5 image of april 13, 2009. Thus, 48 control points were selected
in the image, trying a “randomly - homogeneous” distribution on the territory of the
municipality. Each point was verified at field in september-november 2009 and historical
informations were collected with the local farmer when posible.

The accuracy of the method was moderate, that is, 42% for the full process (Table 7).
Forestry, Pastures/SWVC, Perennial crops and Urban/outcrops showed the better results,
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with values greater or equal than 50%. The rest of the classes presented low accuracy with
values in the interval 0 - 25%. The correlation coefficient of the quantity of control points
and the accuracy was 0.43, suggesting few dependence between both variables. Anyway, a
critical case occurred with the class "Native forest" with 11 control points and only two hits.
An explanation for the low accuracy of the classification process and some specific classes is
the shadow derived from the steep topography, causing confusion among classes and
inconsistent results. A improvement of the results is obtained when principal components
are considerer before classification, with a potential increment of accuracy of 10% (Schroder
& Filippini-Alba, 2010b).

Control points SCC Accuracy

Forestry 9 5 56%
Pastures/SWVC 11 6 55%
Water 2 0 0%

Perennial crops 4 57%
Native forest 11 2 18%
Urban/ outcrops 2 50%
Anual crops 1 25%
Total 48 20 42%

Table 7. Results of the confusion matrix for the process of classification in the municipality
of Montenegro, Rio Grande do Sul state, Brazil (Schroder & Filippini-Alba, 2010b). SCC =
samples correctly classified.

6. Conclusion

Two categories of change detection techniques (Lu et al., 2004) were considered in this
chapter, all of them including classification methods: Post-classification comparison and
strategy with GIS.

The strategy with GISisolated the poligon corresponding to the “Potential area for
agriculture”, then, the interference between some pair of classes was eliminated, by
instance, wetlands and rice crops. The post-classification comparison allowed a rapid
approach about the region with minor accuracy (preliminary results). Definition of the
method used depends on the ratio between cost and efficiency according to the designed
objectives.

Errors associated to classification methods are mainly due to the spectral answer, by
undefinition of classes or occurrence of pixels of transition, because the errors derived from
digitalization were insignificant. Atmospheric conditions and the regional topography also
influence the process of classification.

Land cover changes in a dynamic way, sometimes with significant transformation rates of
one class to another, as the discussed cases confirm. Truth of field appears as an optimal
method to improve results, but the cost of process, in time, financial and human resources is
incremented.
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1. Introduction

Soil salt content is a key factor that determines soil chemical quality together with soil
reaction, charge properties and nutrient reserves (Lal et al., 1999). An adequate salt supply is
essential for an optimum development of photosynthetic mechanism and other biochemical
processes in plants (Sitte et al., 1994). Soil salt content constitutes an environmental problem
when salt accumulation generates drastic changes in soil physical and chemical properties,
adversely affecting soil productivity and plant growth (Richards, 1954; Qadir et al., 2000).

Salinization affects about 30% of the irrigated land of the world, decreasing this area
approximately 1-2% per year due to salt-affected land surfaces (FAO, 2002). In Europe,
about 1-3 million hectares of the land are affected by salinization (European Commission,
2003), and most of these areas are situated in the Mediterranean basin. In Spain, about 18%
of the 3.5 million hectares of irrigated land are severely affected or at serious risk of soil
salinization (European Commission, 2002). Soil salinization is a frequent problem in arid
and semiarid regions like Southeast Spain (Hernandez Bastida et al., 2004). In these areas,
agriculture with a great water requirement combined with high water tables and an adverse
climate (increased occurrence of extreme drought events) have forced irrigation with poor
quality water, causing processes of soil degradation and salinization, limiting crop growth
and the production capacity (Pérez-Sirvent et al., 2003; Acosta et al., 2011).

Evaluating the spatial variability of basic soil properties in saline soils, and mapping
spatial distribution patterns of these soil properties helps to make effective site-specific
management decisions (Ardahanlioglu et al, 2003). Accordingly, remote sensing
techniques and geographic information systems (GIS) have introduced a new era for soil
resources assessment and monitoring in terms of information quality (Mermut and
Eswaran, 2001). A priori knowledge of spectral characteristics of remotely sensed materials
is fundamental to any valuable quantitative analysis (Ben-Dor et al., 1997). The variety of
absorption processes occurring in the soil and their wavelength dependence allow us to
derive information about the chemistry of the minerals composing it from the reflected or
emitted light (Clark, 1999). Reflectance spectra of soils are attributed to numerous soil
properties. There are no narrow absorption bands linked to soil salinity status, since it is
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determined by soil properties such as pH, electrical conductivity, salt content and
exchangeable sodium percentage (Csillag et al., 1993; Farifteh et al., 2008). In this sense, soil
reflectance is derived from the particular spectral behaviour of the heterogeneous
combination of minerals, organic matter and soil water (Ben-Dor and Banin, 1994). Salt-
affected soils cations (Na*, Mg?*, K+, and Ca2?*) and anions (Cl-, SO4%, CO32- and HCOg3") can
be detected by optical spectrometers since salt minerals have diagnostic spectral features
occurring in the visible and near infrared (VNIR) and short-wave infrared (SWIR) spectral
regions (Farifteh et al., 2008). Saline soils usually have evaporate minerals, which spectral
features that can be explained by vibrational absorption due to water molecules chemically
bound as part of the crystal structure (Howari et al.,, 2000). In this sense, the spectral
differences of evaporates of single salt compounds are determinant of the type and
mineralogy of the soils (Howari et al., 2000).

Remote sensing has been extensively employed in soil salinity studies. Data from aerial
photography, videography, and optical, thermal, microwave or geophysical sensors has
been used in soil salinity mapping (Metternich and Zinck, 2003). Perhaps, the most widely
used remote sensing data in recent decades have been provided by multispectral
(Landsat, SPOT, IRS, ASTER) or hyperspectral (DAIS, HyMap, AVIRIS, Hyperion) sensors
in the spectral range approximately between 400 and 2500 nm. Researchers have
frequently employed remote sensing data to map soil salinity with multispectral
(Metternich and Zinck, 1997, Dwivedi et al., 2001; Melendez-Pastor et al., 2010a) and
hyperspectral images (Dehaan and Taylor, 2002, 2003; Schmid et al., 2009, Ghrefat and
Goodell, 2011). Pioneering studies in the 1970s employed air-borne and satellite-borne
multispectral scanners to detect soil salinity, indicating the better capability of infrared
bands over visible bands to locate saline soils and the low contribution of thermal bands
to improve the delineation of saline areas (Richardson et al., 1976; Dalsted et al., 1979).
Nowadays, imaging spectroscopy techniques are employed for the automatic detection of
soil salinization with airborne or satellite sensor (Dehaan and Taylor, 2002, 2003;
Dutkiewicz et al., 2009; Schmid et al., 2009; Weng et al., 2009; Melendez-Pastor et al.,
2010a; Ghrefat and Goodell, 2011). Imaging spectroscopy deals with the mapping of
ground materials by detecting and analysing reflectance/absorbance features in
hyperspectral (or multispectral) images (Clark, 1999). Imaging spectroscopy adds a new
dimension of remote sensing by expanding point spectrometry into a spatial domain and
under field conditions, which is a very good approach for the study of soil properties
(Ben-Dor et al., 2009).

The aim of this chapter is the application of remote sensing for the study of soil salinity of an
agricultural area in southeast coast of the Iberian Peninsula. Different digital image
processing techniques were applied to satellite multispectral images (Landsat TM).
‘Conventional” hard classification techniques were combined with spectral mixture analysis
and soil properties to achieve a better understanding of the soil salinization process in the
study area.

Multispectral satellite images such as those obtained by the Landsat program provide low
or free cost worldwide coverage for four decades. Moreover, salinization problems are
concentrated in arid and semi-arid regions, often in developing countries with few economic
resources. Although there are more advanced sensors that can provide a more precise
quantification of the extent of soil salinity (e.g. hyperspectral), their high cost difficult its
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extensive use. Therefore, it is necessary to continue investigating the application of
multispectral image repositories as a tool to assist in the monitoring and management of
saline soils.

2. Material and methods

This study will evaluate the applicability of various remote sensing techniques for studying
salinization processes in an agricultural coastal area. One of the greatest difficulties in the
application of remote sensing techniques to the study area is the fragmentation of the
territory by the existence of small plots and buildings that create a dispersed mixture of
spectral signals to the scale of a moderate spatial resolution multispectral remote sensing
image as those acquired by the Landsat Thematic Mapper sensor. This difficulty motivates
the need to evaluate various techniques and methodological approaches to carry out this
study as necessary to help monitoring the processes of salinization.

Representative soils of the area were sampled and their properties were characterized at the
laboratory by standard methods. Predominant land cover classes at the soil sampling plots
and at additional land cover validation points were identified. Land cover is a fundamental
variable that impacts on and links many parts of the human and physical environments
(Foody, 2002) with a great influence on soil properties (Caravaca et al., 2002; Majaliwa et al.,
2010; Biro et al., 2011). Both kinds of information in a GIS database were included. In this
sense, the effect of land cover on soil properties was statistically evaluated. Then,
multispectral images were employed for a hard land cover mapping with a supervised
approach using the k-nearest-neighbour classifier. Accuracy assessment methods
highlighted the need to employ a mixed pixel focus to deal with the particularities of the
study area. Spectral unmixing techniques allowed the identification of representative
spectral endmembers and the obtainment of their corresponding fraction images. Finally,
fraction endmembers were employed to characterize land cover classes and to predict soil
properties with various statistical methods.

2.1 Description of the study area

The study area is located in a coastal zone of Southeast Spain, in the province of Alicante. It
is located around 38.14°N and 0.73°W, at the south of the cities of Elche and Alicante. The
study area (Figure 1) comprises alluvial plains resulting from the accumulation of sediments
from the Segura and Vinalop6 rivers. During most of the Holocene (~10,000 years ago to
present) the study area was a large lagoon (Blazquez, 2003). In the last centuries, the ancient
lagoon was transformed into an irrigated agricultural land draining the wetland.
Nowadays, this area is a mixture of small-size cities, coastal urban areas, scattered
residential houses, irrigated crops and isolated and scattered wetlands. The perimeter of the
study area was delimited according to natural or man-made features in order to enclose a
large coastal plain area primarily occupied by irrigated agricultural activities. The study
area lies in the north with the natural parks of El Hondo and the Salinas de Santa Pola. Both
natural areas are wetlands included in the RAMSAR list of wetlands of international
importance. The east and south boundaries are the Sierra del Molar and the Segura River
respectively. Urban areas and sclerophyllous vegetation mainly occupy the Sierra del Molar,
while the Segura River is the most important watercourse in southeast of Iberian Peninsula
providing water for irrigation agriculture and to fill the reservoirs that currently comprise
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Fig. 1. Study area with the Landsat scene (false-colour composite RGB:742) and
superimposed cartographic information (soil samples, urban areas, natural parks and
roads).

the wetland of EI Hondo. The western boundary of the study area is a motorway that cuts
north to south the floodplain.

This coastal region has a semiarid Mediterranean climate, with a mean annual rainfall of less
than 300 mm and a mean annual temperature of 17 °C and defined by the Koppen climate
classification system as Bsk class (dry climate with a dry season in summer and a mean
annual temperature about 18 °C). The climate is arid or semiarid according to the aridity
index of Martonne (De Martonne, 1926) and the aridity index of UNEP (1997) respectively.
Figure 2 shows the daily climatic diagram of mean temperature, precipitation and
evapotranspiration (by the Penman-Monteith method) for the hydrological year 2010-2011
(from October to September) at Catral meteorological station. Mean daily temperature (blue
line) varies from approximately 9°C in winter to more than 25°C in summer. Rain events
(red bars) mainly occurred from December 2010 to May 2011 with total accumulated
precipitation of 182 mm. This very scarce precipitation joint with an accumulated
evapotranspiration of 1115 mm implied that the hydrological year was very dry.
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Fig. 2. Daily values of precipitation, mean temperature and evapotranspiration for the
hydrological year 2010-11 at Catral station. Source data from the Spanish Ministry of
Environment and Rural and Marine Affairs (MARM).

Predominant soil classes are Entisols according to the Soil Taxonomy (Soil Survey Staff,
2006) but affected by agriculture practices along years. They are characterized by a massive
presence of carbonates and soluble salt content. In the studied area, irrigation is essential to
support agriculture. The water deficit during several months requires irrigation while low
quality water is used in the poorly drained soils of these coastal plains, being soil
salinization an environmental problem. Thus, the study area soils are subjected to severe
risk of physical, chemical and biological degradation (De Paz et al., 2006) that endanger
agriculture sustainability.

2.2 Field survey

Field survey was done in the late spring and summer months of the hydrological year 2010-
2011 to collect soil samples and identify land cover classes. An extensive soil sampling was
done, and 116 samples were collected and geographically referenced. Samples were
obtained from the upper 5 cm as solar radiation in VNIR spectral range has limited
penetration capabilities. Soil samples were dried at room temperature and a 2 mm sieve was
used to separate the fine fraction to be analysed. Analysed soil characteristics included in
the study were electrical conductivity (EC) (1:5 w/v water extraction), pH and organic
carbon (OC) by wet chemical oxidation (Walkley and Black, 1934) with potassium
dichromate oxidation (Nelson and Sommers, 1982).

A land cover validation campaign was also conducted along with the soil survey in order to
allow accuracy assessment of generated land cover maps. Land cover validation points were
randomly generated in a GIS and a database with the land cover category generated. A total
of 205 land cover validation points were identified, combining field observation and recent
aerial orto-photography (0.5 m of spatial resolution). Land cover classes identified in the
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study area were: water bodies, seasonal or permanent crops, saltmarshes and misused
agricultural field that tends to be saltmarshes, palm groves, marshes with almost permanent
inundation, and anthropic areas (Table 1).

Land cover ID Features
Water 1 |Wetlands water tables and irrigation ponds
Arable land 2 |Herbaceous (e.g. alfalfa, barley) and horticultural (e.g. melon,

broccoli) crops

Permanent crops 3 |Fruit trees (e.g. orange, lemon, pomegranate)

Fallow/abandoned | 4 |Fallow or recently abandoned agricultural land.

Saltmarsh 5 |Halophyte vegetation (e.g. Salicornia sp., Suaeda sp., Limonium sp.,
Halocnemum sp.)

Palm groves 6 |Palm trees plantations and nurseries, mainly from Phoenix
dactilifera

Marsh 7 |Phragmites australis dominated wetland vegetation

Man-made/urban 8 |Urban areas, roads, farms or industrial areas

Table 1. Descriptions of land cover classes identified in the study area.

Land cover categories at soil sampling points were also identified and included along with
soil properties in a GIS database for the land cover classification training stage and for
further spatial analyses. Note that land cover (i.e. biophysical materials found on the land)
and land use (i.e. how the land is being used by human beings) (Jensen, 2007) are different
terms but often used together or interchangeably. In this chapter, we adopt the term land
cover because we are interested in knowing about the biophysical characteristics of the
study area, but the knowledge of both land use and land cover are important for land
planning and land management activities (Lillesand et al., 2003).

2.3 Satellite imagery preprocessing

Remote sensing data were acquired by the Thematic Mapper (TM) sensor on-board the
Landsat 5 satellite. Meteorological conditions and the satellite pass over the study area
conditioned the date of image acquisition. A scene acquired on 28th June 2011 (path 199 row
33) was employed for analyses. A vertical black line on Figure 2 indicates the time of
acquisition of the scene. No rain events happened 16 days prior to the scene acquisition
date. Typically summer meteorological conditions without cloud coverage and high
temperature were registered on the date of image acquisition, and thus the image quality
was optimal.

Satellite image preprocessing included geometric and atmospheric corrections with the aim
to ensure the spatial comparability with other data sources and to obtain at-ground
reflectance pixel spectra, respectively. Various georeferenced data types were used for the
geometric correction: aerial orthophotos (0.5 m of pixel resolution) and digital cartography
(scale = 1:10000). The Landsat 5 TM scene was geometrically corrected using Ground
Control Points (GCP) identified on the orthophotos and cartographic maps. A quadratic
mapping function of polynomial fit and the nearest neighbour resampling method were
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used for the correction. The nearest neighbour resampling method was selected because it
ensures that the original (raw) pixel values are retained in the resulting output image, which
is an important requirement in any change detection analysis (Mather 2004). The maximum
allowable root mean square error (RMSE) of the geometric correction was less than half a
pixel, a reference value frequently cited (Townsend and Walsh 2001; Jensen, 2005).

Atmospheric correction involves the estimation of the atmospheric optical characteristics at
the time of image acquisition before applying the correction to the data (Kaufman, 1989).
This type of correction is a pre-requisite in many remote sensing applications such as in
classification and change detection procedures (Song et al., 2001). Radiometric calibration
was applied prior to the atmospheric correction. The conversion of raw digital numbers
(DNiaw) of Landsat level 1 (L1) image products to at-satellite radiance values (Lsa) required
the application of current re-scaling values (Chander et al., 2010) by applying the following
expression (Chander and Markham, 2003; Chander et al., 2010):

LMAX 27 LMIN A
Lsat = 255

] (DN) + Lyn 2 @

Where L, is at-satellite radiance [W/(m?2 sr pm)]; Lmin; is the spectral radiance that is scaled
to Qcamin [W/(m2 sr um)] (Qcamin is the minimum quantized calibrated pixel value, i.e.
DN=0, corresponding to Lmin 1); Lmax 5 is the spectral radiance that is scaled to Qcaimax
[W/(m2 sr pm)] (Qealmax is the maximum quantized calibrated pixel value, i.e. DN=255,
corresponding to Lyvax 3); and DN are digital numbers of the L1 image product. Surface
reflectance values (p) were computed by using the image based COST method (Chavez Jr,
1996). Path radiance (Lp) values were computed by using the equation reported in Song et al.
(2001) that assumes 1% surface reflectance for dark objects (Chavez Jr, 1989, 1996; Moran et
al., 1992). The optical thickness for Rayleigh scattering (7)) was estimated according to the
equation given in Kaufman (1989).

2.4 Land cover classification

Image classification procedures aim to automatically categorize all pixels in an image into land
cover classes or themes (Lillesand et al., 2003). Thematic mapping from remotely sensed data
can be defined as grouping together cases (pixels) by their relative spectral similarity
(unsupervised component) with the aim of allocating cases based on their similarity to a set of
predefined classes that have been characterized spectrally (supervised component) (Foody
2002). Multispectral images (like Landsat TM scenes) are frequently used to perform the
classification based on spectral pattern recognition methods that exploits the pixel-by-pixel
spectral information as the basis for automated classification (Lillesand et al., 2003). In this
study, a supervised land cover classification of the Landsat TM image was performed with a k-
nearest-neighbour clustering algorithm to obtain a discrete or ‘hard’ categorical land cover
map for the study area. K-nearest-neighbour (KNN) classifier searches away from the pixel to
be classified in all directions of the spectral space until it encounters k user-specified training
pixels and then assigns the pixel to the class with the majority of pixels encountered (Jensen,
2005). KNN algorithm has been successfully applied for land cover classification with remote
sensing data (Franco-Lopez et al., 2001; Haapanen et al., 2004; Blanzieri and Melgani, 2008).
Land cover classes assigned to the soil plots were employed in the training stage of the
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algorithm. Major urban areas were digitized with a GIS and masked-out of the supervised
classification procedure since urban areas induce a great spectral confusion. Water areas
training points were also included in the training dataset.

The land cover validation database was employed to evaluate the performance of the
classification. Land cover map accuracy assessment was quantified with statistical
methods such as the error matrix and the kappa statistic. The error matrix is a square
array of numbers organized in rows and columns that express the number of sample units
(i.e. pixels) assigned to a particular category relative to the actual category as indicated by
the reference data (Congalton, 2004). Reference data are in the columns while the rows
indicate the map categories to be assessed. This form of expressing accuracy as an error
matrix is an effective way to evaluate both errors of inclusion (commission errors) and
errors of exclusion (omission errors) present in the classification as well as the overall
accuracy (Congalton et al., 1983). In addition to the error matrix, the Kappa coefficient
developed by Cohen (1960) was employed to quantify the accuracy of the land cover map.
Cohen’s Kappa (or KHAT) is a measure of agreement for nominal scales based on the
difference between the actual agreement of the classification (i.e., agreement between
computer classification and reference data as indicated by the diagonal elements) and the
chance agreement, which is indicated by the product of the row and column marginal
(Congalton et al., 1993).

2.5 Spectral unmixing

A mixed pixel results when a sensor’s Instantaneous Field of View (IFOV) includes more
than one land cover type on the ground (Lillesand et al., 2003). The spectrum of a single
pixel is a complex measurement that integrates the radiant flux from all the spatially
unresolved materials in the IFOV, regardless of whether or not we know their identities
(Adams and Gillespie, 2006). Spectral mixture analysis (SMA) has been developed as a
method to transform the reflectance in the bands of multispectral images to fractions of
reference endmembers, which are reflectance spectra of well-characterized materials that
mix to produce spectra equivalent to those of pixels of interest in the image (Adams et al.,
1995). As part of SMA techniques, linear spectral unmixing (LSU) models tread the radiation
recorded by a sensor as the result of a linear mixture of spectrally pure endmember
radiances (Small and Lu 2006). This method is based on the assumptions that: 1) the
recorded radiation by the sensor for each pixel is limited to the sensor’s IFOV, and assumes
no influences by reflected radiation from neighbouring pixels (Settle and Drake 1993), 2) the
overall global radiance is proportional to the surface occupied by each land cover type, and
3) the spectrally pure endmembers are valid for the whole study area (Quarmby et al. 1992).
LSU models describe radiation reflected by an individual pixel (i,j) of a band k as the result
of the product of reflectance for each land cover type by their respective mixture fraction
plus an additional associated error for each pixel. The general expression of the model is
presented in the following equation:

Pijk = zm:llpFi,/’,m P tEij )

Where p;;x is the observed reflectance of a pixel for row i, column j, and band k ; Fi;m is the
proportion of component m of a pixel for row i, column j, for each one of the pure
components; pmx is the characteristic reflectance for component m in band k ; and e;; is the
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error associated to the estimation of proportions for each pixel i, j. The Least Square Mixing
Model proposed by Shimabukuro and Smith (1991) is commonly used to resolve linear
spectral mixture models. The method proposed by Shimabukuro and Smith (1991) assumes
two initial restrictions for the computation of the proportions of spectrally pure
endmembers. The first one implies that pure endmember proportions must range between 0
and 1. This means that the proportions of the components are normalized to a common
range of potential values. The following expression summarizes this first restriction:

0<F

i,jm <1 (3)
The second restriction is that the sum of the fractions for every component is equal to the
total pixel surface. In this way, it is quite simple to express the individual contribution or
fraction of an endmember in relation to the total reflectance of the pixel.

Zmﬂlpl:i,j,m =1 (4)

The choice of a LSU model must consider both the landscape of the test site and the ability
of the model to depict the structure, shape and distribution of the basic landscape
components (Ferreira et al. 2007). Well-chosen endmembers not only represent materials
found in the scene, but provide an intuitive basis for understanding and describing the
information in the image (Adams and Gillespie 2006). Endmembers were obtained after
applying a spatial and spectral remote sensing data dimensionality reduction with the
minimum noise fraction (MNF) and pixel purity index (PPI) techniques, respectively. The
MNF is used to detect the inherent dimensionality of image data, segregating noise from the
signal in the data and reducing computational requirements for subsequent processing tasks
(Boardman and Kruse, 1994). The MNF as modified from Green et al. (1988) consists in two
steps: 1) applying a transformation, based on an estimated noise covariance matrix to
decorrelate and rescale the noise in the data (noise has unit variance and no band-to-band
correlations); and 2) performing a standard principal component transformation of the
noise-whitened data. A final dataset of coherent and almost noise-free bands are selected
from the MNF output and can be used for subsequent processing steps. Pixel Purity Index
(PPI) is a procedure for finding the most spectrally pure (extreme) pixels that typically
correspond to mixing endmembers in multispectral and hyperspectral images (ITT VIS,
2008). PPI is computed by repeatedly projecting n-dimensional scatterplots onto a random
unit vector; the extreme pixels in each projection (those pixels that fall onto the ends of the
unit vector) are recorded and the total number of times each pixel is marked as extreme is
noted. The selection of extreme pixels corresponding to analogous surface features is
complex due to the great number of pixels typically found in remote sensing image data.
The n-dimensional visualizer implemented in ENVI software (ITT Visual Information
Solutions) is a tool to locate, identify, and cluster the purest pixels and most extreme spectral
responses in a data set. The distribution of these points in n-space can be used to estimate
the number of spectral endmembers and their pure spectral signatures (Boardman, 1993).
Three endmembers were used in the LSU model of the study area, namely green vegetation
(GV), non-photosynthetic vegetation (NPV) and shade (S). The GV endmember represents
the signature of green dense vegetation, the NPV endmember is the signature of bare soil or
sparse non-photosynthetic vegetation, and the shade endmember represents the signature of
dark pixels and water bodies.
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2.6 Statistical methods

The possible existence of differences in soil properties based on the land cover classes was
determined by the use of the analysis of variance (ANOVA). ANOVA is used to evaluate
significant differences between means of independent variables. The observed variance of
independent variables is partitioned into components by several explanatory variables
(factors). Land cover class was the factor employed in the analysis. Post-hoc analysis was
performed using Tukey method.

Relationships between fraction endmembers and soil properties were studied by the
principal component analysis (PCA). PCA is a technique of data dimensionality reduction
that performs an orthogonal transformation to convert potentially correlated input variables
into uncorrelated variables or principal components. The first components accumulate most
of the variance and therefore, the most useful information about the variables.

Regression analyses between soil properties and fraction endmembers were performed for
quantitative estimation of soil properties. A linear regression analysis applying a stepwise
method for variable entry and removal was the selected statistical technique. Model
selection was based on the lower typical error of the estimation and minimum collinearity.

3. Results and discussion

The relationship between various soil properties and land cover classes was analysed. Two
approaches to the study of land cover are presented. A first categorization based on discrete
land cover classes and another based on mixture fractions. Finally, statistical models for
predicting soil properties of interest in the study of soil salinity through the use of mixture
fractions are presented.

3.1 Soil properties

The study was focused on soil electrical conductivity (EC), pH and organic carbon (OC)
(Table 2). These properties are important in chemical and biological quality of soils (Lal et al.,
1999). Previous studies in semiarid areas combining remote sensing and soil analyses have
indicated significant differences in these properties in different land cover classes (Biro et al.,

Land covers EC (mS/cm) pH OC (%)

Arable land 1.38 £1.01 ab 8.23£0.26 ab 1.92+0.854a
Permanent crops 0.70+1.00b 840+0260b 1.29+024a
Fallow/abandoned 3.52+243 ac 8.14 +0.25 ab 1.46+0.36a
Saltmarsh 3.98+286¢ 8.05£0.07 ab 3.61+0810b
Palm groves 3.82+242ac 8.20 +0.20 ab 211+1.004
Marsh 471+£2.04c¢ 7.82+0.09a 524+139¢

P-value <0.001*** <0.001*** <0.001***

Table 2. Descriptive statistics (mean + standard deviation) of soil properties based on land
cover classes. The p-value and homogeneous subgroups (lower case letters; Tukey test, P <
0.05) resulting from the ANOVA test are included.
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2011). Cultivated areas (i.e. arable land and permanent crops, homogenous subgroup b)
have lower electrical conductivity values than natural or semi-natural vegetation. The
construction of drainage systems at agricultural areas to encourage the leaching for salinity
control has been a traditional amelioration strategy (Qadir et al., 2000). This fact explains
that marshes and saltmarshes soils have higher EC values than the other land cover classes,
since they are areas with poor drainage and temporally flooded. Salinity increases when
farming finishes (i.e. fallow/abandoned) because irrigation water is not available to
promote salts leaching.

The pH values were slightly alkaline but significantly different for marshes. Wetland soils
are characterized by the permanent or seasonal inundation of the land, promoting
anaerobic conditions and thus reduced redox conditions (high concentration of H* which
implies low pH)(Reddy et al.,, 2000). The organic carbon content was also different
depending on the type of land cover. Arable land and permanent crops soils have organic
carbon content ranging from 1.46 to 2.11% that is not very high (Pérez-Sirvent et al., 2003).
Opposite, wetland soils (i.e. stable saltmarshes and saltmarshes) exhibited the highest
organic carbon contents. Compared to upland areas, most wetland soils show an
accumulation of organic matter by the higher rates of photosynthesis in wetlands than
other ecosystems and the lower rates of decomposition due to anaerobic conditions
(Reddy et al., 2000).

All soil properties are significantly correlated (P<0.01) according to the Pearson bivariate
correlation test applied to the full dataset. Figure 3 shows two scatterplots of the land cover
classes average values (error bars represent the standard deviation) of pH and organics
carbon versus electrical conductivity (EC). EC is negatively correlated with pH (R=-0.61)
and positively correlated with organic carbon (R=0.34), while pH and organic carbon are
negatively correlated (R=-0.32). Two sets of distinct land uses mainly dependent on the EC
values are distinguished: 1) active cultures: with low EC and OC values, and 2) natural
vegetation and crops of low requirements (palm groves): with high EC and OC values,
increasing as the land cover is more similar to the wetland. Palm groves are the most
halotolerant crop and require little tillage.

3.2 Land cover classification

A land cover map was obtained with the k-nearest-neighbours algorithm (Figure 4).
Optimum results were obtained with k=4. The area occupied by the land cover classes
(hectares and percentage of the total area) was quantified (Table 3).

The study area is mainly agricultural but largely occupied by urban areas. Urban/man-
made areas represent 14.4% of the study area. There is a clear distinction between the
northeast portion (area between the two natural parks and the Sierra del Molar) with large
fields and less presence of buildings, and the rest of the study area, with numerous
buildings scattered, villages, small-size towns and smaller parcels. Dominant land cover
classes are also different at these two sectors. Close to the natural parks, there are many
saltmarshes (7.09% of the study area), marshes (1.95% of the study area), palm groves (2.21%
of the study area) and arable land (45.76% of the area and mainly forage, barley and
melons). The other sector has a massive presence of permanent crops (16.3% of the study
area and mainly citrus trees such as orange and lemon trees).
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Fig. 3. Scatterplots with the average values pH and organic carbon versus electrical
conductivity for land cover classes (numbers in italics are the ID number of the class). X and

Y bars represent one standard deviation.

The distribution of land cover classes can be explained by the characteristics of the soils.
Generally, the closest soils to the wetland areas of the natural parks are more saline. These
soils have a poor drainage due to its lower altitude and very high-water tables, largely due
to the horizontal flow of water and salts from the nearby water bodies. Permanent crops
class dominates in areas that are close to the towns, being better drained and less saline.
Fallow/abandoned areas (12.11% of the study area) are spread throughout the study area as
a result of the abandonment of farming on individual fields. However, abandoned land is
more present in the proximal portion of the natural parks since the conditions of salinization
of soils led to their abandonment.
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Fig. 4. Land cover map of the study area.

Land cover classes Area (ha) Area (%)
Water 17.37 0.20
Arable land 4061.52 45.76
Permanent crops 1446.93 16.30
Fallow/abandoned 1074.51 12.11
Saltmarsh 629.01 7.09
Palm groves 196.02 221
Marsh 172.71 1.95
Man-made/urban 1277.73 14.40
TOTAL 8875.80 100

Table 3. Area occupied by land cover classes according to the map obtained by k-nearest

neighbour.

The land cover map accuracy was evaluated with the data set of validation points. Overall
accuracy was a 68%, and KHAT value was 0.56. According to Landis and Koch (1977),
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KHAT values ranging from 0.4 to 0.8 exhibit a moderate agreement. Inter-class confusion
was detected analysing the error matrix. A portion of arable land (78% of producer’s
accuracy, 65% of user’s accuracy) was wrongly classified as permanent crops,
fallow/abandoned land or saltmarshes. A great portion of palm groves (21% of producer’s
accuracy and 75% of user’s accuracy) was classified as arable land. The performance of the
automatic classification for marshes (90% of producer’s accuracy and 75% of user’s
accuracy) and water areas (100% of producer’s accuracy and 80% of user’s accuracy) was
highly satisfactory. The performance of the KNN algorithm for our land cover classification
approach was enough good and comparable with the accuracy obtained by Franco-Lopez et
al. (2001) classifying a forest stand (52% of overall accuracy with k=10), and the results of the
experiment carried on by Samaniego and Schulz (2009) classifying crop types (47% of
overall accuracy with k=5).

3.3 Spectral unmixing and land covers

Spectral mixture analysis was applied to obtain fraction images of green vegetation (GV),
non-photosynthetic vegetation (NPV) and shade endmembers. Spectral signatures of
selected endmembers are highly distinctive (Figure 5). These endmembers had optimal
spectral separability as measured with the transformed divergence method. GV endmember
is associated with vigorous vegetation, NPV endmember is associated with bare soil and dry
halophytic vegetation, and shade endmember is associated with water bodies and low
illuminated areas.
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Fig. 5. Plot showing the spectral signatures of selected green vegetation (GV), non-
photosynthetic vegetation (NPV) and shade endmembers.

Fraction images of the three endmembers and the residual fraction of the spectral mixture
analysis were obtained (Figure 6). Values range from 0 for low high membership to the
image fraction (black colour) to 1 for high membership (white colour). Fractions images are
continuous variables that are graphically represented with a greyscale colour ramp. High
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values of the shade fraction image are present in the wetland areas of the natural parks and
in a triangular area in the middle-right boundary of the study area that corresponds with a
small wetland. A white area in the right of the image corresponds with the Mediterranean
Sea. High green vegetation fraction values area scattered through the study area. They
correspond with active crops at the time of the image acquisition. Indeed, the white areas in
the NPV image fraction correspond with bare soil and saltmarshes which vegetation is quite
dry in summer and have a great spectral confusion with background soil. Urban areas were
also associated with this fraction image. Finally, high values of the residual fraction are
located in industrial areas, whose spectral signature was notably different respect to the
three endmembers of the unmixing model.

Fig. 6. Fraction images of shade/water, green vegetation (GV), non-photosynthetic
vegetation (NPV) and the residual component of the linear spectral mixture analysis.
White/black polygon represents the boundary of the study area.
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Average values of the three fraction images for the land covers were computed and
represented in a ternary diagram (Figure 7). Water land cover has high shade fraction values
(>90%) and very low values for the GV and NPV fractions. Marshes have an important
fraction of shade (>55%) and around 30% of the GV fraction. This mixture composition is
highly indicative of the marshes structure with green Phragmites australis stands, growing on
flooded or water-saturated soils. Shade fraction has a low contribution in the other land
covers (<30%). Saltmarshes, permanent crops, arable land, fallow/abandoned and palm
groves land cover classes have GV fraction values between 20-40% and NPV fraction values
between 50-70%. This relative homogeneity in the mixture fractions values for different land
cover classes could be attributed to the lower water availability in summer, that promotes a
drying and browning of the vegetation and promotes spectral confusion. Melendez-Pastor et
al. (2010b) previously observed this phenomenon in the study area. They also employed
ternary diagrams, combining mixture fraction and land cover classes for a drought year and
an average year. Soil or NPV fractions increase their contribution in a dry weather scenario
(i.e. drought or summer) and the water and GV fractions have a lower contribution.

0

100

40
Arable land

NPV (%) GV (%)

{ 7% Palm groves

30

</—Permanent crops. . ®
N p Marshes
L °
Saltmarshes
o0 ¢ 10
Urban Fallow/abandoned Water

0 10 20 30 40 50 60 70 80 90 100

Shade (%)

Fig. 7. Ternary diagram of the average mixture fraction values for the land cover classes.

3.4 Fraction endmembers to predict soil properties

Mixture fraction values were statistically related to soil salinity. Principal component
analysis provided valuable information about the relationship among soil properties and
spectral mixture analysis fractions. The first three principal components accumulated 75.8%
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of total variance. PC1 was positively correlated with NPV fraction (factor loading = 0.988)
and negatively correlated with GV fraction (factor loading = -0.902). PC1 might be used to
separate vegetated from non-vegetated pixels. PC2 was positively correlated with electrical
conductivity (factor loading = 0.778) and the shade fraction (factor loading = 0.604) and
negatively correlated with the pH (factor loading = -0.785). PC2 might be used to
differentiate soil salinity status.

Salinization status seems to be related to the abundance of the shade fraction. This result
could be explained by the presence of water at the soil profile, which is an evidence of poor
drainage that could lead to salt accumulation. Thus, monitoring shade fraction values along
a year could be an indirect method to detect the evolution of soil electrical conductivity with
remote sensing. PC3 was positively correlated with the residual fraction of the spectral
unmixing (factor loading = 0.853) and organic carbon content (factor loading = 0.711).
Evident negative correlations with the PC3 were not found.
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