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Abstract: Skeletonization has been a part of morphological image processing for a wide variety of ap-

plications. The skeleton is important for object representation in different topics, such as image retrieval 

and computer graphics, character/pattern recognition and analysis of biomedical images. The purpose of 

the present work is to apply a sequential skeletonization algorithm on geophysical images, resulting 

from shallow depth mapping of archaeological sites. The accurate identification of curvilinear structures 

in geophysical images plays an important role in geophysical interpretation and the detection of subsur-

face structures. Experimental results on real data show that skeletonization comprises an important tool 

in image interpretation. 
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1. Introduction 

The interpretation of linear features in geophysical 

imagery resulting from mapping of archaeological 

sites is of considerable importance since they can 

correspond to underlying relics and architectural 

structures. Practical decisions are often made based 

on the images of the subsurface obtained through 

the inversion of the original geophysical data. The 

accurate representation and interpretation of the li-

near features is mainly a function of the spatial 

resolution of the images, the sampling of the mea-

surements and the interpolation algorithms, the 

signal to noise level of the data, the prior informa-

tion regarding the expected targets and the ability 

to model the measured quantities appropriately.  

The necessity of designing skeletonization algo-

rithms dates back to the early years of computer 

technology, in the 1950s. It was realised that in 

some applications (such as character recognition), 

it is sufficient to consider a reduced amount of in-

formation instead of the whole image, which is 

usually in the form of a line-drawing. The basic 

idea was to "peel" the original picture by itera-

tively removing certain contour points. This proce-

dure is the so-called skeletonization process, 

through which a line-like shape (the skeleton) is 

created in order to ease the execution of any fur-

ther analysis and processing of the images. The 

skeleton contains less information to process and it 

enhances shape analysis analysis procedures. To-

day, skeletonization is applied in a very wide range 

of topics such as the analysis of blood cells or 

chromosome shapes in medical science or the iden-

tification of signatures and fingerprints. 

In morphology (Serra, 1982, 1988), the most 

commonly used algorithms are the parallel ones 

(Vincent, 1990, 1991; Couprie, 2006). Their prin-

ciple is based on the modification of the value of 

the current pixel p of an input image (n-

dimensional array of pixels) according to the val-

ues of the pixels in a given neighborhood of p. The 

new value of p is then written in an output image 

different from the current one, so that the order in 

which pixels are scanned has no influence on the 

result. Further scannings can then be performed, 

until a given criterion is fulfilled (e.g., a certain 

number of scannings is achieved, or stability is 

reached). These algorithms are conceptually very 

easy in their implementation and they are well 

suited to specialized hardware systems. On the 

other hand, they usually require a large number of 

complete image scannings, so that their interest on 

classical architectures-like workstations or per-

sonal computers-remains limited, due to prohibi-

tive computation time. This is particularly true 

when complex transformations like watershed or 

skeletons are considered. 
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For this reason, another family of algorithms was 

introduced in 1966 the so-called sequential or re-

cursive algorithms (Rosenfeld and Pfaltz, 1966; 

Lay, 1987) aiming towards the reduction of the 

number of image scannings required to compute a 

given transformation. Like parallel ones, sequential 

algorithms do not require sophisticated data struc-

tures or scanning techniques. They differ from par-

allel algorithms in that they use well-defined scan-

ning orders (usually video or anti-video) and that 

the new value of the current pixel p, determined 

from the values of the pixels in its neighbourhood, 

is exported in the image being processed. So, the 

value of an already scanned pixel may have an in-

fluence on the value of the subsequent scanned 

pixel. 

This study tries to document the approach of skele-

tonization on geophysical images and their contri-

bution to the interpretation of the features that are 

contained in them.  The particular technique was 

applied on real magnetic data obtained from high 

resolution (0.5m or 1m) measurements of the ver-

tical magnetic gradient employing a Geoscan 

FM36 fluxgate gradiometer. For our experiments 

we used a Core 2 Duo laptop at 1.5 GHz. The 

computational complexity of the proposed scheme 

is O(N•M), where N denotes the number of pixels 

in the given image and M the number of filters. A 

typical processing time for the execution of the 

proposed scheme is about 15 seconds for a typical 

image of 0.25 MP (500 x 500) and 24 filters. 

2. Methodology 

Prior the application of skeletonization the geo-

physical images were smoothed using a wavelet 

decomposition and a step filter convolution, in or-

der to reduce noise levels and enhance the curvili-

near structures to be detected.  

Different types of zero mean filters can be used for 

curvilinear structures enhancement. The proposed 

step filter models a line of specific orientation and 

width. Figure 1 illustrates the proposed step filter 

model of 45
o
 orientation, which has been used for 

curvilinear structures enhancement. Let F(a,w) be 

a zero mean filter of orientation angle a and width 

w. The filter was constrained to be zero mean and 

to have total energy equal to 1, so that it would 

yield zero response on constant structures and the 

responses of different angles and widths would be 

comparable, respectively. 

The preliminary goal of skeletonization is to classi-

fy Im pixels into three classes C1, C2 and C3 with la-

bel numbers 1, 2 and 3, respectively: 

C1: The pixels that (surely) belong to curvilinear 

structures.  

C2: The pixels that they are uncertain if they 

belong to curvilinear structures.  

C3: The pixels that (surely) do not belong to 

curvilinear structures.  

The proposed classification is inspired by hysteri-

sis thresholding technique (Canny, 1986). Hysteri-

sis thresholding has been successfully used on 

edge detection problem (Canny edge detector). The 

edge detection process serves to simplify the 

analysis of images by drastically reducing the 

amount of data to be processed, while at the same 

time preserving useful information about object 

boundaries. According to hysterisis thresholding, 

two thresholds Tl (low), Th (high) are used for ini-

tial classification (three classes). A pixel is de-

tected if it is either greater than Th (or greater than 

Tl and connected to a pixel that is greater than Th). 

The advantage of this type of thresholding is that it 

allows the abstention of some connected point 

groups (Kermad and Chehdi, 2002).  

In the proposed scheme, the thresholds Tl and Th 

are automatically estimated. Let Med to denote the 

median value of Im. Then, Tl  is given by the mean 

value of Im pixels that have a value lower than 

Med, whereas Th  is given by the mean value of Im 

pixels that have a value higher than Med. Let Bi be 

the image of initial pixel classification into classes 

C1, C2 and C3. Let Im(p) and m to denote the value 

of image Im on pixel p and the median value of 9 

pixel-neighborhood of pixel p in Im, respectively.  

Then, if Im(p) ≥ Th  and Im(p) > m, p is classified to 

C1, since its value is very high comparing with the 

image (Im(p) ≥ Th) and with its neighborhood (Im(p) 

> m). If Im(p) ≥ Th  or (Im(p) > Tl  and Im(p) > m), p 

is classified to C2  class. If the pixel value is high 

compared with the image, but it is not high enough 

compared with its neighborhood or reversely, then 

it is labeled to an unknown class. Otherwise, p is 

classified to C3 class.  

Finally, a region growing based method is exe-

cuted providing the final pixel labeling into classes 

C1 and C3. So, the goal of this method is to classify 

the pixels of class C2. Let Bf be the image of final 

pixel classification into classes C1 and C3. Accord-

ing to the method, the pixels of C2 class are classi-

fied to C1 if they are connected to a pixel of C1, 

otherwise they are classified to C3 class. 
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Thin curvilinear structure detection (Bt) is provided 

if we change the rule of classification to class C2 

removing the case of Im(p) ≥ Th.  

Figure 2 illustrates the results skeletonization, us-

ing as input the geophysical image of Figure 1(a). 

Im response using polynomial filters is shown in 

Figure 2(b). The initial and the final pixel labeling 

results are illustrated in Figure 2(c) and (d), respec-

tively. The white, gray and black pixels correspond 

to classes C1, C2 and C3, respectively. Finally, Fig-

ure 2 (e) indicates the outcome of the thin curvilin-

ear structure detection, projected on the original 

image Figure 1(a), with colour lines. The colour of 

the lines is related to the curvilinear structure en-

hancement image Im (red for high values and blue 

for low values). The method sufficiently recog-

nizes all curvilinear structures under various orien-

tations and scales.  

3. Results and Discussion 

A lot of algorithms have been developed and im-

plemented during the past ten years to find the 

skeletons of different images. It is very difficult to 

measure the "goodness" of such a method quantita-

tively. The analytical comparison of the methods is 

very sophisticated, since they are based on differ-

ent models. That is the reason why the skeletoniza-

tions are compared according to the results they 

produce in the practice. There are papers about the 

technical parameters of these algorithms (like 

computation speed, memory requirement, etc.) and 

there are observations based on the resulting skele-

tons produced by the various algorithms. A possi-

ble way to classify the algorithms is to examine if 

the resulting skeletons meet the following (natural) 

conditions (Fazekas and Hajdu, 1996): 

 
Fig.1. A sample of the step filter used for signal en-

hancement of the geophysical signals. 
 

 

 

 

 

 
Fig. 2. Results of pixel labelling. (up, α) original image; 

(b) Im, curvilinear structure enhancement; (c) Bi , initial 

pixel labelling; (d) Bf , final pixel labelling; (down, e) Bt, 
thin curvilinear structure detection. 
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1. The skeleton should accurately reflect the shape 

of the original image. 

2. The topological properties (homotopy) of the 

object and the background should be preserved.  

3. The thickness of the skeleton should be one 

pixel. 

4. The skeletonization should preserve symmetry. 

5. The skeletonization process should be immune 

to noise. 

Figures 3, 4 and 5 illustrate results of the proposed 

method for different geophysical images. The 

processing of the particular images was carried out 

using 2 different widths and twelve different orien-

tations (15
o
 angle step), resulting good curvilinear 

structure enhancement in any of the above orienta-

tions.  

In the example of Figure 3 (a), the given geophysi-

cal image resulting by measurements of the verti-

cal magnetic gradient above a roman structure in 

Sikyon, is mainly prevailed by linear subsurface 

structures, well detected (Fig. 3b, c, d) using the 

pre-mentioned algorithm. The example of Figure 4 

(a) was selected, in order to demonstrate the effi-

ciency of the presented algorithm in detecting cur-

vilinear structures. The relics of a church (Byzan-

tine Basilica) prevail in this image. The shape (Fig. 

4b, c, d) of the church is well specified after the 

application of skeletonization. Secondary struc-

tures around the church, weakly observed in the 

original image, are also detected after the applica-

tion of skeletonization. 

Figure 5 (a) shows the original image of the verti-

cal magnetic gradient acquired above a Roman-

Byzantine complex in Nikopolis. The shape of the 

subsurface linear and curvilinear structures is more 

complex in this image. The efficiency of the ap-

plied algorithm is also proved by the results of 

Figures   5 (b), (c), (d).  

The most significant factor constraining the 

matching of skeletons is the skeleton’s sensitivity 

to an object’s boundary deformation; little noise or 

a variation of the boundary often generates 

redundant skeleton branches that may seriously 

disturb the topology of the skeleton’s graph. This 

is also observed in the presented examples. 

However, the stability of the algorithm is also 

connected to the data quality. Well preserved 

subsurface structures producing a strong magnetic 

response within a relative low noise background, 

 

 

 

 
Fig. 3. Results of the proposed method on magnetic data 

acquired above a Roman structure in Sikyon (area A). 

(up, a) Original image (units in nT/m); (b) Linear 

structure enhancement; (c) Thin linear structure 

detection; (down, d) The skeleton of the studied area. 
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such as the church in Figure 3, are well detected 

and presented by the applied algorithm. 

 

 

 

 

 

 
Fig. 4. Results of the proposed method on magnetic data 

acquired above a Byzantine Basilica church in Sikyon 

(area B); (up, a) Original image (units in nT/m); (b) 

Curvilinear structure enhancement; (c) Thin curvilinear 

structure detection; (down, d) The skeleton of the 

studied area. 

 

 

 

 
Fig. 5. Results of the proposed method on magnetic data 

acquired above a Roman-Byzantine complex (probably 

paths) in Nikopolis. (up, a) Original image (units in 

nT/m); (b) Linear and curvilinear structure 

enhancement; (c) Thin linear and curvilinear structure 

detection; (down, d) The skeleton of the studied area. 
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4. Conclusions 

In this paper a fast, effective method for the en-

hancement of curvilinear patterns of geophysical 

images is proposed. The algorithm efficiently 

combines a rotation and scale invariant filter pro-

viding a detection of subsurface curvilinear struc-

tures. The proposed method has been applied to 

recognize patterns in archaeological sites which 

may be correlated to architectural relics. Experi-

mental results with real geophysical images indi-

cated the reliable performance of the proposed 

scheme.  

As future work we plan to overcome skeleton’s in-

stability of boundary deformation by applying 

skeleton pruning (i.e., eliminating redundant skele-

ton branches). 
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